Predicting land use and land cover change dynamics in the eThekwini Municipality: a machine learning approach with Landsat imagery

被引:0
|
作者
Buthelezi, Mthokozisi Ndumiso Mzuzuwentokozo [1 ]
Lottering, Romano Trent [1 ]
Peerbhay, Kabir Yunus [1 ]
Mutanga, Onisimo [1 ]
机构
[1] Univ KwaZulu Natal, Sch Agr Earth & Environm Sci, Pietermaritzburg, South Africa
基金
新加坡国家研究基金会;
关键词
Land cover; land use; remote sensing; machine learning; Landsat; DIFFERENCE WATER INDEX; BUILT-UP INDEX; CLASSIFICATION; AREAS; PERFORMANCE; ALGORITHMS; QUANTITY; ACCURACY; NDWI; TM;
D O I
10.1080/14498596.2024.2378362
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Monitoring and providing accurate land use and land cover (LULC) change information is vital for sustainable environmental planning. This study used Landsat imagery from 2002 to 2022 to create updated LULC change maps for the eThekwini Municipality. Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) were used to conduct these LULC classifications, with XGBoost achieving the highest accuracy (80.57%). The generated maps revealed a significant decrease in cropland and an increase in impervious surfaces. As such, this research established a framework for continuous LULC mapping and highlighted Landsat 9's potential in LULC classifications.
引用
收藏
页码:1241 / 1263
页数:23
相关论文
共 50 条
  • [1] Land Use Land Cover Change in the fringe of eThekwini Municipality: Implications for urban green spaces using remote sensing
    Otunga, Charles
    Odindi, John
    Mutanga, Onisimo
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2014, 3 (02): : 145 - 162
  • [2] Assessing the extent of land degradation in the eThekwini municipality using land cover change and soil organic carbon
    Buthelezi, Mthokozisi Ndumiso Mzuzuwentokozo
    Lottering, Romano
    Peerbhay, Kabir
    Mutanga, Onisimo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (04) : 1339 - 1367
  • [3] Land-use/land cover change and land surface temperature in Metropolitan Manila, Philippines using landsat imagery
    King Joshua Almadrones-Reyes
    Nikki Heherson A. Dagamac
    GeoJournal, 2023, 88 : 1415 - 1426
  • [4] Land-use/land cover change and land surface temperature in Metropolitan Manila, Philippines using landsat imagery
    Almadrones-Reyes, King Joshua
    Dagamac, Nikki Heherson A.
    GEOJOURNAL, 2023, 88 (02) : 1415 - 1426
  • [5] Deep Learning Semantic Segmentation for Land Use and Land Cover Types Using Landsat 8 Imagery
    Boonpook, Wuttichai
    Tan, Yumin
    Nardkulpat, Attawut
    Torsri, Kritanai
    Torteeka, Peerapong
    Kamsing, Patcharin
    Sawangwit, Utane
    Pena, Jose
    Jainaen, Montri
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (01)
  • [6] From land cover to land use: Applying random forest classifier to Landsat imagery for urban land-use change mapping
    Shih, Hsiao-chien
    Stow, Douglas A.
    Chang, Kou-Chen
    Roberts, Dar A.
    Goulias, Konstadinos G.
    GEOCARTO INTERNATIONAL, 2022, 37 (19) : 5523 - 5546
  • [7] Implications of land use and land cover change in Mampong municipality, Ghana
    Blay, James Kofi
    Abunyuwah, Isaac
    SUSTAINABLE ENVIRONMENT, 2024, 10 (01):
  • [8] Land use classification from multitemporal Landsat imagery using the Yearly Land Cover Dynamics (YLCD) method
    Julien, Y.
    Sobrino, J. A.
    Jimenez-Munoz, J-C
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2011, 13 (05) : 711 - 720
  • [9] A machine learning-based classification of LANDSAT images to map land use and land cover of India
    Singh, Ram Kumar
    Singh, Prafull
    Drews, Martin
    Kumar, Pavan
    Singh, Hukum
    Gupta, Ajay Kumar
    Govil, Himanshu
    Kaur, Amarjeet
    Kumar, Manoj
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 24
  • [10] Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping
    Shih, Hsiao-chien
    Stow, Douglas A.
    Tsai, Yu Hsin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (04) : 1248 - 1274