Intelligent prediction model of a polymer fracture grouting effect based on a genetic algorithm-optimized back propagation neural network

被引:7
|
作者
Liang, Jiasen [1 ,2 ]
Du, Xueming [1 ,2 ]
Fang, Hongyuan [1 ,2 ]
Li, Bin [1 ,2 ]
Wang, Niannian [1 ,2 ]
Di, Danyang [1 ,2 ]
Xue, Binghan [1 ,2 ]
Zhai, Kejie [1 ,2 ]
Wang, Shanyong [3 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Yellow River Lab, Zhengzhou 450001, Henan, Peoples R China
[3] Univ Newcastle, Prior Res Ctr Geotech Sci & Engn, Sch Engn, Callaghan, NSW 2308, Australia
关键词
Polymer Grouting; Prediction Model; Genetic Algorithm; Fractures; Trenchless Technology; UNCONFINED COMPRESSIVE STRENGTH; TUNNEL;
D O I
10.1016/j.tust.2024.105781
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Polymer grouting can effectively improve the stability of surrounding rock fractures. However, in practical construction, it is difficult to judge the degree of coupling between the slurry and the rock, and the effective grouting range after grouting. Therefore, early prediction of the effect of grouting on the surrounding rock is crucial. In this paper, a new artificial intelligence method is proposed to predict the polymer fracture grouting effect. The genetic algorithm optimized back propagation neural network (GA-BP) is employed to construct an intelligent prediction model. To acquire a substantial dataset for constructing the model, an easily assembled/ disassembled test apparatus for polymer fracture grouting is designed. The maximum coupling degree of the fractures and slurry diffusion distance are chosen as the evaluation metrics for the grouting effectiveness. The influences of the fracture characteristic parameters and grouting volume on the grouting effect are investigated. Furthermore, a comprehensive analysis is conducted on the spatiotemporal diffusion characteristics and slurryrock coupling mechanism of polymer grouting. Compared to traditional BP neural networks, and three other machine learning algorithms (decision trees, random forests and gradient boosting decision trees), the GA-BP model outperforms them in terms of R2 (coefficient of determination), MSE (mean squared error), MBE (mean bias error), MAE (mean absolute error) and RMSE (root mean squared error) in both the test and training sets. The GA algorithm significantly improves the accuracy and robustness of the prediction model. The optimized model demonstrates significant accuracy in predicting grouting results and assessing efficiency, providing a practical reference for grouting construction.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Prediction Model of Car Ownership Based on Back Propagation Neural Network Optimized by Particle Swarm Optimization
    Zhang, Hualei
    Li, Yuan
    Yan, Lianghuan
    SUSTAINABILITY, 2023, 15 (04)
  • [32] Prediction of milk protein content based on improved sparrow search algorithm and optimized back propagation neural network
    Liu, Jiangping
    Hu, Pengwei
    Xue, Heru
    Pan, Xin
    Chen, Chen
    SPECTROSCOPY LETTERS, 2022, 55 (04) : 229 - 239
  • [33] Identification of Baijiu based on the Raman spectroscopy and back-propagation neural network optimized using genetic algorithm
    Zong, Xuyan
    Zhou, Xianjiang
    Wen, Lei
    Gan, Shuang
    Li, Li
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2024, 126
  • [34] Performance prediction and optimization of lateral exhaust hood based on back propagation neural network and genetic algorithm
    Guo, Junwei
    Huang, Yanqiu
    Li, Zhiyuan
    Li, Jiarun
    Jiang, Chuang
    Chen, Yaru
    SUSTAINABLE CITIES AND SOCIETY, 2024, 113
  • [35] Wind Speed Prediction Using a Cooperative Coevolution Genetic Algorithm Based on Back Propagation Neural Network
    Li, Jie
    Wang, Rui
    Zhang, Tao
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4578 - 4583
  • [36] Intelligent prediction of rockburst in tunnels based on back propagation neural network integrated beetle antennae search algorithm
    Li, Guangkun
    Xue, Yiguo
    Qu, Chuanqi
    Qiu, Daohong
    Wang, Peng
    Liu, Qiushi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (12) : 33960 - 33973
  • [37] Intelligent prediction of rockburst in tunnels based on back propagation neural network integrated beetle antennae search algorithm
    Guangkun Li
    Yiguo Xue
    Chuanqi Qu
    Daohong Qiu
    Peng Wang
    Qiushi Liu
    Environmental Science and Pollution Research, 2023, 30 : 33960 - 33973
  • [38] Discrimination and comparison experiments of basalt tectonic setting based on improved genetic algorithm-optimized neural network
    Ren Q.
    Li M.
    Han S.
    Earth Science Frontiers, 2019, 26 (04) : 117 - 124
  • [39] A Back-Propagation Neural Network Model Based on Genetic Algorithm for Prediction of Build-Up Rate in Drilling Process
    Wangde Qiu
    Guojun Wen
    Haojie Liu
    Arabian Journal for Science and Engineering, 2022, 47 : 11089 - 11099
  • [40] A Back-Propagation Neural Network Model Based on Genetic Algorithm for Prediction of Build-Up Rate in Drilling Process
    Qiu, Wangde
    Wen, Guojun
    Liu, Haojie
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (09) : 11089 - 11099