A Comparative Analysis of Conformable, Non-conformable, Riemann-Liouville, and Caputo Fractional Derivatives

被引:3
|
作者
Brahim, A. Ait [1 ]
El Ghordaf, J. [1 ]
El Hajaji, A. [2 ]
Hilal, K. [1 ]
Valdes, J. E. Napoles [3 ]
机构
[1] Univ Sci & Technol, AMSC Lab, Beni Mellal, Morocco
[2] Univ Chouaib Doukali, OEE Dept, ENCGJ, El Jadida, Morocco
[3] Univ Nacl Nordeste, FACENA Lab, RA-3400 Corrientes, Argentina
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 03期
关键词
Conformbale fractional derivative; non-conformable fractional derivative; Riemann-Liouville; Caputo fractional derivatives;
D O I
10.29020/nybg.ejpam.v17i3.5237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study undertakes a comparative analysis of the non conformable and conformable fractional derivatives alongside the Riemann-Liouville and Caputo fractional derivatives. It examines their efficacy in solving fractional ordinary differential equations and explores their applications in physics through numerical simulations. The findings suggest that the conformable fractional derivative emerges as a promising substitute for the non conformable, Riemann-Liouville and Caputo fractional derivatives within the range of order alpha where 1/2 < alpha < 1.
引用
收藏
页码:1842 / 1854
页数:13
相关论文
共 50 条
  • [11] Fractional conformable derivatives of Liouville-Caputo type with low-fractionality
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Taneco-Hernandez, M. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 424 - 438
  • [12] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [13] On Riemann-Liouville and Caputo Fractional Forward Difference Monotonicity Analysis
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Hamasalh, Faraidun Kadir
    MATHEMATICS, 2021, 9 (11)
  • [14] Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann-Liouville derivatives
    Alidousti, Javad
    Khoshsiar Ghaziani, Reza
    Bayati Eshkaftaki, Ali
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1260 - 1278
  • [15] SOLUTION OF THE FRACTIONAL LIOUVILLE EQUATION BY USING RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES IN STATISTICAL MECHANICS
    Korichi, Z.
    Souigat, A.
    Bekhouche, R.
    Meftah, M. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 336 - 345
  • [16] On the "walking dead" derivatives: Riemann-Liouville and Caputo
    Ortigueira, Manuel D.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [17] EQUIVALENCE OF INITIALIZED RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES
    Yuan, Jian
    Gao, Song
    Xiu, Guozhong
    Shi, Bao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 2008 - 2023
  • [18] Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives
    Sene, Ndolane
    AIMS MATHEMATICS, 2019, 4 (01): : 147 - 165
  • [19] Objectivity Lost when Riemann-Liouville or Caputo Fractional Order Derivatives Are Used
    Balint, Agneta M.
    Balint, Stefan
    TIM18 PHYSICS CONFERENCE, 2019, 2071
  • [20] Charging and Discharging RCα Circuit Under Riemann-Liouville and Caputo Fractional Derivatives
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Ahmed, Waleed A.
    Faied, Mariam
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,