Nonlinear dynamic responses of CNT-reinforced panels with complex curvature, piezoelectric layer, and CNT-reinforced stiffeners

被引:2
|
作者
Duc, Vu Minh [1 ]
Minh, Tran Quang [1 ]
Phuong, Nguyen Thi [2 ,3 ]
Hung, Vu Tho [4 ]
Nam, Vu Hoai [4 ]
机构
[1] Univ Transport Technol, Inst Transport Technol, Hanoi 100000, Vietnam
[2] Ton Duc Thang Univ, Inst Adv Study Technol, Lab Adv Mat & Struct, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[4] Univ Transport Technol, Fac Civil Engn, Hanoi, Vietnam
关键词
Vibration and dynamic buckling; CNT-Reinforced composite; Piezoelectric layer; Sinusoid panel; Parabola panel; Cylindrical panel; LAMINATED CYLINDRICAL PANELS; COMPOSITE PLATES; ELASTIC FOUNDATIONS; FREE-VIBRATION;
D O I
10.1016/j.euromechsol.2024.105341
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the nonlinear vibration and dynamic buckling responses of the sinusoid, parabola, and cylindrical CNT-reinforced panels with piezoelectric layer stiffened by a CNT-reinforced stiffener system in uniform temperature change with a piezoelectric layer are presented. An improved homogenization technique for the x- or y-direction CNT-reinforced stiffener system is utilized to determine the total stiffnesses of the considered structures. The higher-order shear deformation theory (HSDT) in conjunction with the von K<acute accent>arm<acute accent>an nonlinearities is adopted to formulate the motion equations, while the stress function for complex curvature panels is estimated using the like-Galerkin procedure. The nonlinear equation of motion is acquired by utilizing the Lagrange function and Euler-Lagrange's equations. The numerical examples use the Runge-Kutta technique to acquire the nonlinear time-amplitude curves, and the critical dynamic buckling load is determined using the Budiansky-Roth criterion. These examples evaluate the effects of stiffeners, piezoelectric layer, material, and geometrical parameters on the nonlinear vibration and dynamic buckling responses of the panels.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Predicting Young's modulus of CNT-reinforced polymers
    Jamal-Omidi, Majid
    Sabour, Mohammad Hossein
    ShayanMehr, Mahdi
    Sazesh, Saeid
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 : 34 - 37
  • [22] Dynamic stability and nonlinear transient behaviors of CNT-reinforced fiber/polymer composite cylindrical panels with delamination around a cutout
    Sang-Youl Lee
    Nonlinear Dynamics, 2020, 99 : 2551 - 2569
  • [23] Strength and failure mechanisms of cnt-reinforced copper nanocomposite
    Faria, Bruno
    Guarda, Catia
    Silvestre, Nuno
    Lopes, Jose N. C.
    Galhofo, Diogo
    COMPOSITES PART B-ENGINEERING, 2018, 145 : 108 - 120
  • [24] Microwave Augmented Fabrication and Evaluation of CNT-Reinforced Nanohydroxyapatite
    Akram, Muhammad Aftab
    Khan, Muhammad Bilal
    Hussain, Rafaqat
    Iqbal, Nida
    ADVANCED MATERIALS FOR APPLIED SCIENCE AND TECHNOLOGY, 2011, 326 : 110 - +
  • [25] Numerical Optimization of CNT Distribution in Functionally Graded CNT-Reinforced Composite Beams
    Cho, J. R.
    Kim, H. J.
    POLYMERS, 2022, 14 (20)
  • [26] Mechanical and Electrochemical Behavior of CNT-Reinforced YSZ Coating
    Kalangi, Chaithanya
    Veeram, Mahidhar Reddy
    HIGH TEMPERATURE CORROSION OF MATERIALS, 2024, 101 (02) : 309 - 330
  • [27] Mechanical and Electrochemical Behavior of CNT-Reinforced YSZ Coating
    Chaithanya Kalangi
    Mahidhar Reddy Veeram
    High Temperature Corrosion of Materials, 2024, 101 : 309 - 330
  • [28] Mode I Fracture Toughness of CNT-Reinforced PMMA
    Simhi, T.
    Banks-Sills, L.
    Fourman, V.
    Shlayer, A.
    STRAIN, 2015, 51 (06) : 474 - 482
  • [29] Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates
    Zhang, L. W.
    Liu, W. H.
    Liew, K. M.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 86 : 122 - 132
  • [30] An equivalent continuum meshless approach for material nonlinear analysis of CNT-reinforced composites
    Wang, J. F.
    Zhang, W.
    COMPOSITE STRUCTURES, 2018, 188 : 116 - 125