DEMONSTRATION OF A STANDALONE, DESCRIPTIVE, AND PREDICTIVE DIGITAL TWIN OF A FLOATING OFFSHORE WIND TURBINE

被引:0
|
作者
Stadtmann, Florian [1 ]
Wassertheurer, Henrik Gusdal [1 ]
Rasheed, Adil [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
[2] SINTEF Digital, Dept Math & Cybernet, Trondheim, Norway
关键词
Digital Twin; Offshore Wind; Floating Offshore Wind Turbine; SYSTEM;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Digital Twins bring several benefits for planning, operation, and maintenance of remote offshore assets. In this work, we explain the digital twin concept and the capability level scale in the context of wind energy. Furthermore, we demonstrate a standalone digital twin, a descriptive digital twin, and a prescriptive digital twin of an operational floating offshore wind turbine. The standalone digital twin consists of the virtual representation of the wind turbine and its operating environment. While at this level the digital twin does not evolve with the physical turbine, it can be used during the planning-, design-, and construction phases. At the next level, the descriptive digital twin is built upon the standalone digital twin by enhancing the latter with real data from the turbine. All the data is visualized in virtual reality for informed decision-making. Besides being used for data bundling and visualization, the descriptive digital twin forms the basis for diagnostic, predictive, prescriptive, and autonomous tools. A predictive digital twin is created through the use of weather forecasts, neural networks, and transfer learning. Finally, digital twin technology is discussed in a much wider context of ocean engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Research on pitch control of floating offshore wind turbine
    Yu W.
    Ding Q.
    Li C.
    Hao W.
    Han Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (01): : 143 - 148
  • [32] ON MOTION AND HYDROELASTIC ANALYSIS OF A FLOATING OFFSHORE WIND TURBINE
    Lamei, Azin
    Hayatdavoodi, Masoud
    Wong, Carlos
    Tang, Bin
    PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 10, 2019,
  • [33] Detecting wake performance of floating offshore wind turbine
    Lin, Lin
    Wang, Kai
    Vassalos, Dracos
    OCEAN ENGINEERING, 2018, 156 : 263 - 276
  • [34] A NEW BALLASTED FLOATING SUPPORT FOR OFFSHORE WIND TURBINE
    Poirette, Yann
    Perdrizet, Timothee
    Gilloteaux, Jean Christophe
    Pourtier, Alice
    Mabile, Claude
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9B: OCEAN RENEWABLE ENERGY, 2014,
  • [35] A new conceptual design for offshore floating wind turbine
    Ren, Nianxin
    Ma, Zhe
    Ou, Jinping
    Ren, N. (rnx822@163.com), 1710, Science Press (33): : 1710 - 1714
  • [36] Generic Upscaling Methodology of a Floating Offshore Wind Turbine
    Wu, Jeffrey
    Kim, Moo-Hyun
    ENERGIES, 2021, 14 (24)
  • [37] Life cycle assessment of a floating offshore wind turbine
    Weinzettel, Jan
    Reenaas, Marte
    Solli, Christian
    Hertwich, Edgar G.
    RENEWABLE ENERGY, 2009, 34 (03) : 742 - 747
  • [38] Platform Oscillation Reduction of a Floating Offshore Wind Turbine
    Niu, Yue
    Nagamune, Ryozo
    IFAC PAPERSONLINE, 2023, 56 (03): : 205 - 210
  • [39] Design of a ducted wind turbine for offshore floating platforms
    Torresi, Marco
    Postiglione, Nicolangelo
    Filianoti, Pasquale F.
    Fortunato, Bernardo
    Camporeale, Sergio M.
    WIND ENGINEERING, 2016, 40 (05) : 468 - 474
  • [40] Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains; [Modellierung eines digitalen Zwillings zur vorausschauenden Wartung von Getrieben in Antriebssträngen schwimmender Offshore-Windkraftanlagen]
    Moghadam F.K.
    Rebouças G.F.S.
    Nejad A.R.
    Forschung im Ingenieurwesen, 2021, 85 (2) : 273 - 286