Self-Supervised Interest Transfer Network via Prototypical Contrastive Learning for Recommendation

被引:0
|
作者
Sun, Guoqiang [1 ,2 ]
Shen, Yibin [2 ]
Zhou, Sijin [2 ]
Chen, Xiang [1 ]
Liu, Hongyan [1 ]
Wu, Chunming [1 ]
Lei, Chenyi [2 ]
Wei, Xianhui [2 ]
Fang, Fei [2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain recommendation has attracted increasing attention from industry and academia recently. However, most existing methods do not exploit the interest invariance between domains, which would yield sub-optimal solutions. In this paper, we propose a cross-domain recommendation method: Self-supervised Interest Transfer Network (SITN), which can effectively transfer invariant knowledge between domains via prototypical contrastive learning. Specifically, we perform two levels of cross-domain contrastive learning: 1) instance-to-instance contrastive learning, 2) instance-to-cluster contrastive learning. Not only that, we also take into account users' multi-granularity and multi-view interests. With this paradigm, SITN can explicitly learn the invariant knowledge of interest clusters between domains and accurately capture users' intents and preferences. We conducted extensive experiments on a public dataset and a large-scale industrial dataset collected from one of the world's leading e-commerce corporations. The experimental results indicate that SITN achieves significant improvements over state-of-the-art recommendation methods. Additionally, SITN has been deployed on a micro-video recommendation platform, and the online A/B testing results further demonstrate its practical value. Supplement is available at: https://github.com/fanqieCoffee/SITN-Supplement.
引用
收藏
页码:4614 / 4622
页数:9
相关论文
共 50 条
  • [21] Self-Supervised Video Representation Learning with Meta-Contrastive Network
    Lin, Yuanze
    Guo, Xun
    Lu, Yan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8219 - 8229
  • [22] Self-Supervised Facial Motion Representation Learning via Contrastive Subclips
    Sun, Zheng
    Torrie, Shad A.
    Sumsion, Andrew W.
    Lee, Dah-Jye
    ELECTRONICS, 2023, 12 (06)
  • [23] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    Frontiers of Computer Science, 2021, (04) : 102 - 104
  • [24] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567
  • [25] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [26] Group Contrastive Self-Supervised Learning on Graphs
    Xu, Xinyi
    Deng, Cheng
    Xie, Yaochen
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3169 - 3180
  • [27] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [28] A comprehensive perspective of contrastive self-supervised learning
    Chen, Songcan
    Geng, Chuanxing
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (04)
  • [29] A comprehensive perspective of contrastive self-supervised learning
    Songcan Chen
    Chuanxing Geng
    Frontiers of Computer Science, 2021, 15
  • [30] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1222 - 1237