Conditional generative adversarial networks for individualized causal mediation analysis

被引:1
|
作者
Huan, Cheng [1 ]
Sun, Rongqian [1 ]
Song, Xinyuan [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
关键词
causal mediation analysis; CGAN; individualized causal effects; MILD COGNITIVE IMPAIRMENT; ALZHEIMER-DISEASE; SENSITIVITY-ANALYSIS; HIPPOCAMPAL ATROPHY; APOLIPOPROTEIN-E; INFERENCE;
D O I
10.1515/jci-2022-0069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Most classical methods popularly used in causal mediation analysis can only estimate the average causal effects and are difficult to apply to precision medicine. Although identifying heterogeneous causal effects has received some attention, the causal effects are explored using the assumptive parametric models with limited model flexibility and analytic power. Recently, machine learning is becoming a major tool for accurately estimating individualized causal effects, thanks to its flexibility in model forms and efficiency in capturing complex nonlinear relationships. In this article, we propose a novel method, conditional generative adversarial network (CGAN) for individualized causal mediation analysis (CGAN-ICMA), to infer individualized causal effects based on the CGAN framework. Simulation studies show that CGAN-ICMA outperforms five other state-of-the-art methods, including linear regression, k-nearest neighbor, support vector machine regression, decision tree, and random forest regression. The proposed model is then applied to a study on the Alzheimer's disease neuroimaging initiative dataset. The application further demonstrates the utility of the proposed method in estimating the individualized causal effects of the apolipoprotein E-epsilon 4 allele on cognitive impairment directly or through mediators.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Conditional Generative Adversarial Networks for modelling fuel sprays
    Ates, Cihan
    Karwan, Farhad
    Okraschevski, Max
    Koch, Rainer
    Bauer, Hans-Joerg
    ENERGY AND AI, 2023, 12
  • [22] The effect of loss function on conditional generative adversarial networks
    Abu-Srhan, Alaa
    Abushariah, Mohammad A. M.
    Al-Kadi, Omar S.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (09) : 6977 - 6988
  • [23] Conditional generative adversarial siamese networks for object tracking
    Song J.-H.
    Zhang J.
    Liu Y.-J.
    Yu Y.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (05): : 1110 - 1118
  • [24] Conditional Generative Adversarial Networks for Inorganic Chemical Compositions
    Sawada, Yoshihide
    Morikawa, Koji
    Fujii, Mikiya
    CHEMISTRY LETTERS, 2021, 50 (04) : 623 - 626
  • [25] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [26] Quantum State Tomography with Conditional Generative Adversarial Networks
    Ahmed, Shahnawaz
    Sanchez Munoz, Carlos
    Nori, Franco
    Kockum, Anton Frisk
    PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [27] CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS FOR ACOUSTIC ECHO CANCELLATION
    Pastor-Naranjo, Fran
    del Amor, Rocio
    Silva-Rodriguez, Julio
    Ferrer, Miguel
    Pinero, Gema
    Naranjo, Valery
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 85 - 89
  • [28] A framework for personalized recommendation with conditional generative adversarial networks
    Jing Wen
    Xi-Ran Zhu
    Chang-Dong Wang
    Zhihong Tian
    Knowledge and Information Systems, 2022, 64 : 2637 - 2660
  • [29] Interpolating Seismic Data With Conditional Generative Adversarial Networks
    Oliveira, Dario A. B.
    Ferreira, Rodrigo S.
    Silva, Reinaldo
    Brazil, Emilio Vital
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1952 - 1956
  • [30] Clustering Using Conditional Generative Adversarial Networks (cGANs)
    Ruzicka, Marek
    Dopiriak, Matus
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,