Residual-based a posteriori error estimators for algebraic stabilizations

被引:0
|
作者
Jha, Abhinav [1 ]
机构
[1] Univ Stuttgart, Inst Appl Anal & Numer Simulat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Steady-state convection diffusion reaction equations; Algebraically stabilized finite element methods; A posteriori estimator; Adaptive grid refinement;
D O I
10.1016/j.aml.2024.109192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we extend the analysis for the residual-based a posteriori error estimators in the energy norm defined for the algebraic flux correction (AFC) schemes (Jha, 2021) to the newly proposed algebraic stabilization schemes (John and Knobloch, 2022; Knobloch, 2023). Numerical simulations on adaptively refined grids are performed in two dimensions showing the higher efficiency of an algebraic stabilization with similar accuracy compared with an AFC scheme.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Residual-based a posteriori error analysis for symmetric mixed Arnold–Winther FEM
    Carsten Carstensen
    Dietmar Gallistl
    Joscha Gedicke
    Numerische Mathematik, 2019, 142 : 205 - 234
  • [22] RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING LINEAR ELEMENTS
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 617 - 636
  • [23] A theory for local, a posteriori, pointwise, residual-based estimation of the finite element error
    Hugger, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 135 (02) : 241 - 292
  • [24] A RESIDUAL-BASED A POSTERIORI ERROR ESTIMATOR FOR THE STOKES-DARCY COUPLED PROBLEM
    Babuska, Ivo
    Gatica, Gabriel N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 498 - 523
  • [25] HIERARCHICAL A POSTERIORI RESIDUAL BASED ERROR ESTIMATORS FOR BILINEAR FINITE ELEMENTS
    Braack, Malte
    Taschenberger, Nico
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (02) : 466 - 480
  • [26] An adaptive variational multiscale element free Galerkin method based on the residual-based a posteriori error estimators for convection-diffusion-reaction problems
    Cao, Xiaoting
    Zhang, Xiaohua
    Shi, Xiaotao
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 136 : 238 - 251
  • [27] Residual a posteriori error estimators for contact problems in elasticity
    Hild, Patrick
    Nicaise, Serge
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (05): : 897 - 923
  • [28] Residual-Based A Posteriori Error Estimator for the Mixed Finite Element Approximation of the Biharmonic Equation
    Gudi, Thirupathi
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (02) : 315 - 328
  • [29] Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
    Du, Shaohong
    Sun, Shuyu
    Xie, Xiaoping
    NUMERISCHE MATHEMATIK, 2016, 134 (01) : 197 - 222
  • [30] Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method
    Chouly, Franz
    Fabre, Mathieu
    Hild, Patrick
    Pousin, Jerome
    Renard, Yves
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 921 - 954