Percentage Comparison of Fuzzy Numbers Using a Newly Presented Method in the Context of Surrogate Modeling

被引:0
|
作者
Oberleiter, Thomas [1 ]
Willner, Kai [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
关键词
Surrogate modeling; Fuzzy numbers; Fuzzy number comparison; Uncertainty;
D O I
10.1007/s40815-024-01732-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The O-index presented here allows a statement about the percentage deviation between two fuzzy numbers. For this purpose, one fuzzy number is defined s the reference. This fuzzy number is described with the help of its core value and its support. The deviation of the other fuzzy number, which is defined as the comparison number, is then quantified via the area differences of the left and right limits of the two numbers. In addition, the case when decomposed fuzzy numbers are involved, which are given as alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -cuts is taken into account. Thus, the O-index- alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} can be used to calculate a separate percentage deviation for each alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -cut and thus generate additional knowledge. The O-index then allows a very detailed description of the deviation between two fuzzy numbers. One application of the O-index is the estimation of the accuracy of a surrogate model in relation to a reference model in the context of uncertainty quantification. This is illustrated by a mechanical example, a bending beam.
引用
收藏
页码:2246 / 2257
页数:12
相关论文
共 50 条
  • [21] A Method for Uncertain Sales Forecast by Using Triangular Fuzzy Numbers
    Linares-Mustaros, Salvador
    Merigo, Jose M.
    Carles Ferrer-Comalat, Joan
    MODELING AND SIMULATION IN ENGINEERING, ECONOMICS, AND MANAGEMENT, MS 2012, 2012, 115 : 98 - 113
  • [22] An Effective Method of Analysing Student Performance Using Fuzzy Numbers
    Revathi, A. N.
    Karpagam, A.
    Suguna, M.
    Salahuddin
    ADVANCES IN FUZZY SYSTEMS, 2024, 2024
  • [23] Ranking fuzzy numbers with an area method using radius of gyration
    Yong, Deng
    Zhu, Zhenfu
    Qi, Liu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (6-7) : 1127 - 1136
  • [24] Ranking Fuzzy Numbers with an Area Method Using Circumcenter of Centroids
    Rao, P. Phani Bushan
    Shankar, N. Ravi
    FUZZY INFORMATION AND ENGINEERING, 2013, 5 (01) : 3 - 18
  • [25] COMPARISON OF FUZZY NUMBERS USING LEFT/RIGHT SIDES OF LEVEL SETS
    Peker, S.
    Shikhlinskaya, R.
    Nasibov, E.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (01) : 34 - 46
  • [26] Comparison of fuzzy numbers using possibility programming: Comments and new concepts
    Iskander, MG
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (6-7) : 833 - 840
  • [27] A New Pairwise Comparison Based Method of Ranking LR-fuzzy Numbers
    Zhang, Mingxin
    Yu, Fusheng
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, AICI 2010, PT II, 2010, 6320 : 160 - 167
  • [28] Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context
    Salamat, Nadeem
    Kamran, Muhammad
    Ashraf, Shahzaib
    Abdulla, Manal Elzain Mohammed
    Ismail, Rashad
    Al-Shamiri, Mohammed M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (02): : 1893 - 1932
  • [29] A new method to rank fuzzy numbers using Dempster-Shafer theory with fuzzy targets
    Chai, Kok Chin
    Tay, Kai Meng
    Lim, Chee Peng
    INFORMATION SCIENCES, 2016, 346 : 302 - 317
  • [30] Uncertain Context Modeling of Dimensional Ontology Using Fuzzy Subset Theory
    Jiang, Ying
    Dong, Hui
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2008, 2008, 5291 : 256 - 269