Percentage Comparison of Fuzzy Numbers Using a Newly Presented Method in the Context of Surrogate Modeling

被引:0
|
作者
Oberleiter, Thomas [1 ]
Willner, Kai [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
关键词
Surrogate modeling; Fuzzy numbers; Fuzzy number comparison; Uncertainty;
D O I
10.1007/s40815-024-01732-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The O-index presented here allows a statement about the percentage deviation between two fuzzy numbers. For this purpose, one fuzzy number is defined s the reference. This fuzzy number is described with the help of its core value and its support. The deviation of the other fuzzy number, which is defined as the comparison number, is then quantified via the area differences of the left and right limits of the two numbers. In addition, the case when decomposed fuzzy numbers are involved, which are given as alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -cuts is taken into account. Thus, the O-index- alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} can be used to calculate a separate percentage deviation for each alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -cut and thus generate additional knowledge. The O-index then allows a very detailed description of the deviation between two fuzzy numbers. One application of the O-index is the estimation of the accuracy of a surrogate model in relation to a reference model in the context of uncertainty quantification. This is illustrated by a mechanical example, a bending beam.
引用
收藏
页码:2246 / 2257
页数:12
相关论文
共 50 条
  • [1] Sampling strategy for fuzzy numbers in the context of surrogate models
    Thomas Oberleiter
    Kai Willner
    SN Applied Sciences, 2021, 3
  • [2] Sampling strategy for fuzzy numbers in the context of surrogate models
    Oberleiter, Thomas
    Willner, Kai
    SN APPLIED SCIENCES, 2021, 3 (11):
  • [3] A context-dependent method for ordering fuzzy numbers using probabilities
    Yager, RR
    Detyniecki, M
    Bouchon-Meunier, B
    INFORMATION SCIENCES, 2001, 138 (1-4) : 237 - 255
  • [4] Comparison of fuzzy numbers using a fuzzy distance measure
    Tran, L
    Duckstein, L
    FUZZY SETS AND SYSTEMS, 2002, 130 (03) : 331 - 341
  • [5] Fate/transport modeling using fuzzy numbers
    LaRue, J
    Tyagi, AK
    AFTER THE RAIN HAS FALLEN, 1998, : 117 - 122
  • [6] Direct identification method using fuzzy numbers
    Arakawa, Masao
    Yamakawa, Hiroshi
    Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1991, 57 (540): : 2587 - 2592
  • [7] Approximation of fuzzy numbers using the convolution method
    Huang, Huan
    Wu, Congxin
    Xie, Jialiang
    Zhang, Dongxiao
    FUZZY SETS AND SYSTEMS, 2017, 310 : 14 - 46
  • [8] DIRECT IDENTIFICATION METHOD USING FUZZY NUMBERS
    ARAKAWA, M
    YAMAKAWA, H
    JSME INTERNATIONAL JOURNAL SERIES III-VIBRATION CONTROL ENGINEERING ENGINEERING FOR INDUSTRY, 1992, 35 (03): : 421 - 426
  • [9] UNCERTAIN ROBOT ENVIRONMENT MODELING USING FUZZY NUMBERS
    KIM, WJ
    KO, JH
    CHUNG, MJ
    FUZZY SETS AND SYSTEMS, 1994, 61 (01) : 53 - 62
  • [10] MODELING OF UNCERTAINTY OF CONNECTION ARRIVAL USING FUZZY NUMBERS
    Gonda, Dalibor
    Majer, Tomas
    PROCEEDINGS OF THE INTERNATIONAL SCIENTIFIC CONFERENCE QUANTITATIVE METHODS IN ECONOMICS MULTIPLE CRITERIA DECISION MAKING XXI, 2022, : 49 - 55