Cooperative Eco-Driving Control of Connected Multi-Vehicles With Spatio-Temporal Constraints

被引:4
|
作者
Dong, Shiying [1 ]
Harzer, Jakob [2 ]
Frey, Jonathan [2 ,3 ]
Meng, Xiangyu [4 ]
Liu, Qifang [1 ]
Gao, Bingzhao [5 ]
Diehl, Moritz [2 ,3 ]
Chen, Hong [6 ,7 ]
机构
[1] Jilin Univ, Dept Control Sci & Engn, Changchun 130012, Peoples R China
[2] Univ Freiburg, Dept Microsyst Engn IMTEK, D-79110 Freiburg, Germany
[3] Univ Freiburg, Dept Math, Freiburg, Germany
[4] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
[5] Tongji Univ, Coll Automot Studies, Shanghai 201804, Peoples R China
[6] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201804, Peoples R China
[7] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Optimal control; Vehicle dynamics; Intelligent vehicles; Indexes; Energy consumption; Dedicated short range communication; Cruise control; Eco-driving; connected and automated vehicles; spatio-temporal constraints; time-energy optimal control; TRAJECTORY OPTIMIZATION; ELECTRIC VEHICLES; ENERGY MANAGEMENT; DEPARTURE; SIGNALS; SYSTEM;
D O I
10.1109/TIV.2023.3282490
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we propose a novel time-energy optimal control approach with applications in cooperative eco-driving of connected and automated vehicles (CAVs) in urban traffic networks. Safely approaching and departing signalized intersections requires the satisfaction of both spatial equality constraints determined by intersection locations and temporal inequality constraints in compliance with the green light phases. To generate time- and energy-optimal trajectories, the optimal crossing times at intersections are firstly treated as characteristic time constraints, which makes the problem tractable. Then the direct multiple shooting method and time transformation technique are applied to find a numerical solution. The contribution of this article is twofold. The first one is the development of a novel time- and energy-optimal control approach that ensures a trade-off between minimizing energy and time for a general class of optimal control problems with multiple characteristic times. The second contribution is the application of the proposed method to the challenging problem of multi-CAVs' cooperative eco-driving control, in which multiple vehicles must simultaneously minimize travel time and energy consumption in the presence of spatio-temporal constraints. Simulation analysis over real-world urban route scenarios shows that the proposed eco-driving control strategy can save up to 8.2% of energy or reduce up to 6.7% of travel time compared to a baseline method. Furthermore, hardware-in-the-loop (HiL) experimental results indicate that the proposed strategy can be implemented in real-time.
引用
收藏
页码:1733 / 1743
页数:11
相关论文
共 50 条
  • [31] Eco-driving of Connected and Automated Vehicles in Mixed and Power-heterogeneous Traffic Flow
    Hu Y.-H.
    Jin X.-F.
    Wang Y.-B.
    Guo J.-Q.
    Zhang L.-H.
    Hu J.
    Lu Q.-R.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2022, 35 (03): : 15 - 27
  • [32] Future Connected Vehicles: Challenges and Opportunities for Spatio-temporal Computing
    Ali, Reem Y.
    Gunturi, Venkata M. V.
    Shekhar, Shashi
    Eldawy, Ahmed
    Mokbel, Mohamed F.
    Kotz, Andrew J.
    Northrop, William F.
    23RD ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2015), 2015,
  • [33] The Eco-Driving Considering Coordinated Control Strategy for the Intelligent Electric Vehicles
    Hao, Liang
    Sun, Bohua
    Li, Gang
    Guo, Lixin
    IEEE ACCESS, 2021, 9 : 10686 - 10698
  • [34] Multistage Prediction-Based Eco-Driving Control for Connected and Automated Plug-In Hybrid Electric Vehicles
    Zhu, Pengxing
    Hu, Jianjun
    Li, Jiajia
    Xiao, Feng
    Sun, Zhicheng
    Peng, Hang
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (04): : 8030 - 8049
  • [35] Segmented guidance method for multi-UAVs cooperative attack with spatio-temporal constraints
    Wang, Yujie
    Tang, Zhongnan
    Xin, Hongbo
    Chen, Qingyang
    Gao, Xianzhong
    Deng, Xiaolong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2024, 238 (04) : 439 - 451
  • [36] Design of a cooperative eco-driving rail control system: an experimental study
    S. La Delfa
    S. Enjalbert
    P. Polet
    F. Vanderhaegen
    Cognition, Technology & Work, 2021, 23 : 285 - 297
  • [37] Dynamic Eco-Driving on Signalized Arterial Corridors during the Green Phase for the Connected Vehicles
    Zhao, Xiangmo
    Wu, Xia
    Xin, Qi
    Sun, Kang
    Yu, Shaowei
    JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [38] A Deep Reinforcement Learning Framework for Eco-Driving in Connected and Automated Hybrid Electric Vehicles
    Zhu, Zhaoxuan
    Gupta, Shobhit
    Gupta, Abhishek
    Canova, Marcello
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (02) : 1713 - 1725
  • [39] Design of a cooperative eco-driving rail control system: an experimental study
    La Delfa, S.
    Enjalbert, S.
    Polet, P.
    Vanderhaegen, F.
    COGNITION TECHNOLOGY & WORK, 2021, 23 (02) : 285 - 297
  • [40] Eco-driving strategy for connected vehicles at signalized intersections considering human driver error
    Chen, Jian
    Qian, Lijun
    Xuan, Liang
    Chen, Chen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024, 238 (13) : 4046 - 4064