Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection

被引:0
|
作者
Zhang, Yongshan [1 ]
Li, Yijiang [1 ]
Wang, Xinxin [2 ]
Jiang, Xinwei [1 ]
Zhou, Yicong [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Noise reduction; Anomaly detection; Training; Image edge detection; Hyperspectral imaging; Geoscience and remote sensing; denoising autoencoder; graph neural network; hyperspectral imagery; REPRESENTATION;
D O I
10.1109/LGRS.2024.3416454
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we propose a stacked graph fusion denoising autoencoder (SGFDAE) for hyperspectral anomaly detection. Specifically, the global and local graphs are constructed from an HSI to explore potential structural and spatial information. With the designed graph fusion strategy, an advanced graph denoising autoencoder with deep architecture is developed in a hierarchical manner. To achieve better reconstruction and detection, a greedy layerwise unsupervised pretraining strategy is presented for network training. Experiments show that SGFDAE achieves 97.17%, 98.43%, and 98.90% detection accuracies by averaging the results of the datasets from three different scenes and outperforms the state-of-the-art methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Sequential Band Fusion for Hyperspectral Anomaly Detection
    Song, Meiping
    Li, Fang
    Yu, Chunyan
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] HYPERSPECTRAL ANOMALY DETECTION VIA BAND FUSION
    Li, Fang
    Song, Meiping
    Chang, Chein-, I
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2324 - 2327
  • [43] Deep feature fusion-based stacked denoising autoencoder for tag recommendation systems
    Fei, Zhengshun
    Wang, Jinglong
    Liu, Kangling
    Attahi, Eric
    Huang, Bingqiang
    IET CYBER-SYSTEMS AND ROBOTICS, 2023, 5 (03)
  • [44] Denoising Hybrid Noises in Image with Stacked Autoencoder
    Ye, Xiufen
    Wang, Lin
    Xing, Huiming
    Huang, Le
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 2720 - 2724
  • [45] Relational Stacked Denoising Autoencoder for Tag Recommendation
    Wang, Hao
    Shi, Xingjian
    Yeung, Dit-Yan
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3052 - 3058
  • [46] Knowledge-based Stacked Denoising Autoencoder
    Liu G.-L.
    Yu J.-B.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 774 - 786
  • [47] Adaptive Noise Level for Stacked Denoising Autoencoder
    Zhang, Qianjun
    Zhang, Lei
    3RD INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND INDUSTRIAL INFORMATICS, (ISMII 2017), 2017, : 178 - 184
  • [48] Visual saliency detection via invariant feature constrained stacked denoising autoencoder
    Ma, Yunpeng
    Yu, Zhihong
    Zhou, Yaqin
    Xu, Chang
    Yu, Dabing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27451 - 27472
  • [49] Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder
    Dhahri, Habib
    Rabhi, Besma
    Chelbi, Slaheddine
    Almutiry, Omar
    Mahmood, Awais
    Alimi, Adel M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3259 - 3274
  • [50] TransGAD: A Transformer-Based Autoencoder for Graph Anomaly Detection
    Guo, Zehao
    Wu, Nannan
    Zhao, Yiming
    Wang, Wenjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 269 - 284