Statistics Enhancement Generative Adversarial Networks for Diverse Conditional Image Synthesis

被引:1
|
作者
Zuo, Zhiwen [1 ]
Li, Ailin [2 ]
Wang, Zhizhong [2 ]
Zhao, Lei [2 ]
Dong, Jianfeng [1 ]
Wang, Xun [1 ]
Wang, Meng [3 ]
机构
[1] Zhejiang Gongshang Univ, Coll Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[3] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Codes; Image synthesis; Task analysis; Mutual information; Random variables; Generators; Generative adversarial networks; Diverse conditional image synthesis; generative adversarial network; mode collapse; mutual information;
D O I
10.1109/TCSVT.2023.3348471
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conditional generative adversarial networks (cGANs) aim to synthesize diverse images given the input conditions and the latent codes, but they are prone to map an input to a single output regardless of the variations in latent code, which is also well known as the mode collapse problem of cGANs. To alleviate the problem, in this paper, we investigate explicitly enhancing the statistical dependency between the latent code and the synthesized image in cGANs by utilizing mutual information neural estimators to estimate and maximize the conditional mutual information (CMI) between them given the input condition. The method provides a new perspective from information theory to improve diversity for cGANs and can facilitate many existing conditional image synthesis frameworks with a simple neural estimator extension. Moreover, our studies show that several key designs, including the neural estimator choice, the neural estimator's network design, and the sampling strategy, are crucial to the success of the method. Extensive experiments on four popular conditional image synthesis tasks, including class-conditioned image generation, paired and unpaired image-to-image translation, and text-to-image generation, demonstrate the effectiveness and superiority of the proposed method.
引用
收藏
页码:6167 / 6180
页数:14
相关论文
共 50 条
  • [31] Document image binarization with cascaded generators of conditional generative adversarial networks
    Zhao, Jinyuan
    Shi, Cunzhao
    Jia, Fuxi
    Wang, Yanna
    Xiao, Baihua
    PATTERN RECOGNITION, 2019, 96
  • [32] Bidirectional Conditional Generative Adversarial Networks
    Jaiswal, Ayush
    AbdAlmageed, Wael
    Wu, Yue
    Natarajan, Premkumar
    COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 : 216 - 232
  • [33] Conditional Graphical Generative Adversarial Networks
    Li C.-X.
    Zhu J.
    Zhang B.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1002 - 1008
  • [34] Auxiliary Conditional Generative Adversarial Networks for Image Data Set Augmentation
    Mudavathu, Kalpana Devi Bai
    Rao, V. P. Chandra Sekhara
    Ramana, K., V
    PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, : 263 - 269
  • [35] Conditional Wasserstein Generative Adversarial Networks for Rebalancing Iris Image Datasets
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Harfiya, Latifa Nabila
    Chang, Ching-Chun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (09) : 1450 - 1458
  • [36] Tile Art Image Generation using Conditional Generative Adversarial Networks
    Matsumura, Naoki
    Tokura, Hiroki
    Kuroda, Yuki
    Ito, Yasuaki
    Nakano, Koji
    2018 SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS (CANDARW 2018), 2018, : 209 - 215
  • [37] Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification
    Zhong, Zilong
    Li, Jonathan
    Clausi, David A.
    Wong, Alexander
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3318 - 3329
  • [38] Multiview Scene Image Inpainting Based on Conditional Generative Adversarial Networks
    Yuan, Zefeng
    Li, Hengyu
    Liu, Jingyi
    Luo, Jun
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (02): : 314 - 323
  • [39] Privacy preserving histopathological image augmentation with Conditional Generative Adversarial Networks
    Andrei, Alexandra-Georgiana
    Constantin, Mihai Gabriel
    Graziani, Mara
    Mueller, Henning
    Ionescu, Bogdan
    PATTERN RECOGNITION LETTERS, 2025, 188 : 185 - 192
  • [40] Multilevel Image Dehazing Algorithm Using Conditional Generative Adversarial Networks
    Gan, Kailei
    Zhao, Jieyu
    Chen, Hao
    IEEE ACCESS, 2020, 8 : 55221 - 55229