Transformer-Based Selective Super-resolution for Efficient Image Refinement

被引:0
|
作者
Zhang, Tianyi [1 ]
Kasichainula, Kishore [2 ]
Zhuo, Yaoxin [2 ]
Li, Baoxin [2 ]
Seo, Jae-Sun [3 ]
Cao, Yu [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
[2] Arizona State Univ, Tempe, AZ USA
[3] Cornell Tech, New York, NY USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional super-resolution methods suffer from two drawbacks: substantial computational cost in upscaling an entire large image, and the introduction of extraneous or potentially detrimental information for downstream computer vision tasks during the refinement of the background. To solve these issues, we propose a novel transformer-based algorithm, Selective Super-Resolution (SSR), which partitions images into non-overlapping tiles, selects tiles of interest at various scales with a pyramid architecture, and exclusively reconstructs these selected tiles with deep features. Experimental results on three datasets demonstrate the efficiency and robust performance of our approach for super-resolution. Compared to the state-of-the-art methods, the FID score is reduced from 26.78 to 10.41 with 40% reduction in computation cost for the BDD100K dataset.
引用
收藏
页码:7305 / 7313
页数:9
相关论文
共 50 条
  • [41] Reference-Based Image Super-Resolution with Deformable Attention Transformer
    Cao, Jiezhang
    Liang, Jingyun
    Zhang, Kai
    Li, Yawei
    Zhang, Yulun
    Wang, Wenguan
    Van Gool, Luc
    COMPUTER VISION - ECCV 2022, PT XVIII, 2022, 13678 : 325 - 342
  • [42] EF-TSR:edge feature transformer-based DEM super-resolution network
    Li, Zhijie
    Mi, Deyuan
    Li, Changhua
    Gao, Yuan
    Jie, Jun
    REMOTE SENSING LETTERS, 2025, 16 (04) : 389 - 399
  • [43] Learning Attention from Attention: Efficient Self-Refinement Transformer for Face Super-Resolution
    Li, Guanxin
    Shi, Jingang
    Zong, Yuan
    Wang, Fei
    Wang, Tian
    Gong, Yihong
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1035 - 1043
  • [44] TTSR: A Transformer-Based Topography Neural Network for Digital Elevation Model Super-Resolution
    Wang, Yi
    Jin, Shichao
    Yang, Zekun
    Guan, Hongcan
    Ren, Yu
    Cheng, Kai
    Zhao, Xiaoqian
    Liu, Xiaoqiang
    Chen, Mengxi
    Liu, Yu
    Guo, Qinghua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [45] Cross-Frame Transformer-Based Spatio-Temporal Video Super-Resolution
    Zhang, Wenhui
    Zhou, Mingliang
    Ji, Cheng
    Sui, Xiubao
    Bai, Junqi
    IEEE TRANSACTIONS ON BROADCASTING, 2022, 68 (02) : 359 - 369
  • [46] An Efficient Selective Perceptual-Based Super-Resolution Estimator
    Karam, Lina J.
    Sadaka, Nabil G.
    Ferzli, Rony
    Ivanovski, Zoran A.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3470 - 3482
  • [47] AN EFFICIENT, SELECTIVE, PERCEPTUAL-BASED SUPER-RESOLUTION ESTIMATOR
    Ferzli, Rony
    Ivanovski, Zoran A.
    Karam, Lina J.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1260 - 1263
  • [48] Activating More Pixels in Image Super-Resolution Transformer
    Chen, Xiangyu
    Wang, Xintao
    Zhou, Jiantao
    Qiao, Yu
    Dong, Chao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22367 - 22377
  • [49] Image Super-Resolution Using Dilated Window Transformer
    Park, Soobin
    Choi, Yong Suk
    IEEE ACCESS, 2023, 11 (60028-60039): : 60028 - 60039
  • [50] Multi-granularity Transformer for Image Super-Resolution
    Zhuge, Yunzhi
    Jia, Xu
    COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 138 - 154