Differentiating Benign from Malignant Cystic Renal Masses using CT Texture-based Machine Learning Algorithms

被引:1
|
作者
Ranlachandran, Anupama
机构
来源
RADIOLOGY-IMAGING CANCER | 2024年 / 6卷 / 02期
关键词
D O I
10.1148/rycan.249007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
[No abstract available]
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Accuracy of Contrast-enhanced US for Differentiating Benign from Malignant Solid Small Renal Masses
    Atri, Mostafa
    Tabatabaeifar, Leila
    Jang, Hyun-Jung
    Finelli, Anthony
    Moshonov, Hadas
    Jewett, Michael
    RADIOLOGY, 2015, 276 (03) : 900 - 908
  • [32] A machine learning approach for differentiating malignant from benign enhancing foci on breast MRI
    D'Amico, Natascha C.
    Grossi, Enzo
    Valbusa, Giovanni
    Rigiroli, Francesca
    Colombo, Bernardo
    Buscema, Massimo
    Fazzini, Deborah
    Ali, Marco
    Malasevschi, Ala
    Cornalba, Gianpaolo
    Papa, Sergio
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2020, 4 (01)
  • [33] A machine learning approach for differentiating malignant from benign enhancing foci on breast MRI
    Natascha C. D’Amico
    Enzo Grossi
    Giovanni Valbusa
    Francesca Rigiroli
    Bernardo Colombo
    Massimo Buscema
    Deborah Fazzini
    Marco Ali
    Ala Malasevschi
    Gianpaolo Cornalba
    Sergio Papa
    European Radiology Experimental, 4
  • [34] A Deep Learning-Based Radiomics Model for Differentiating Benign and Malignant Renal Tumors
    Zhou, Leilei
    Zhang, Zuoheng
    Chen, Yu-Chen
    Zhao, Zhen-Yu
    Yin, Xin-Dao
    Jiang, Hong-Bing
    TRANSLATIONAL ONCOLOGY, 2019, 12 (02): : 292 - 300
  • [35] Machine learning and magnetic resonance imaging: Differentiating benign from malignant osseous tumors
    Emil, N. Suzanne
    Sibbitt, Randy R. R.
    Sibbitt Jr, Wilmer L. L.
    JOURNAL OF CLINICAL ULTRASOUND, 2023, 51 (06) : 1036 - 1038
  • [36] Unenhanced CT texture analysis with machine learning for differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma
    Tomita, Hayato
    Yamashiro, Tsuneo
    Iida, Gyo
    Tsubakimoto, Maho
    Mimura, Hidefumi
    Murayama, Sadayuki
    NAGOYA JOURNAL OF MEDICAL SCIENCE, 2021, 83 (01): : 135 - 149
  • [37] Incremental value of machine learning-based radiomics for preoperative discrimination between malignant and benign small renal masses
    Wang, Z. J.
    EUROPEAN UROLOGY, 2024, 85 : S1328 - S1328
  • [38] A Radiomic-based Machine Learning Algorithm to Reliably Differentiate Benign Renal Masses from Renal Cell Carcinoma
    Nassiri, Nima
    Maas, Marissa
    Cacciamani, Giovanni
    Varghese, Bino
    Hwang, Darryl
    Lei, Xiaomeng
    Aron, Monish
    Desai, Mihir
    Oberai, Assad A.
    Cen, Steven Y.
    Gill, Inderbir S.
    Duddalwar, Vinay A.
    EUROPEAN UROLOGY FOCUS, 2022, 8 (04): : 988 - 994
  • [39] Diagnostic accuracy of FDG-PET/CT in differentiating benign from malignant ovarian masses: A comparison with DWI
    Morita, Naomi
    Yamasaki, Hiromi
    Otsuka, Hideki
    Otomi, Yoichi
    Nose, Hayato
    Harada, Masafumi
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [40] Texture-Based Analysis of 100 MR Examinations of Head and Neck Tumors - Is It Possible to Discriminate Between Benign and Malignant Masses in a Multicenter Trial?
    Fruehwald-Pallamar, J.
    Hesselink, J. R.
    Mafee, M. F.
    Holzer-Fruehwald, L.
    Czerny, C.
    Mayerhoefer, M. E.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2016, 188 (02): : 195 - 202