Differentiating Benign from Malignant Cystic Renal Masses using CT Texture-based Machine Learning Algorithms

被引:1
|
作者
Ranlachandran, Anupama
机构
来源
RADIOLOGY-IMAGING CANCER | 2024年 / 6卷 / 02期
关键词
D O I
10.1148/rycan.249007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
[No abstract available]
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Differentiating Benign From Malignant Cystic Renal Masses: A Feasibility Study of Computed Tomography Texture-Based Machine Learning Algorithms
    Miskin, Nityanand
    Qin, Lei
    Silverman, Stuart G.
    Shinagare, Atul B.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (03) : 376 - 381
  • [2] Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses
    Yap, Felix Y.
    Varghese, Bino A.
    Cen, Steven Y.
    Hwang, Darryl H.
    Lei, Xiaomeng
    Desai, Bhushan
    Lau, Christopher
    Yang, Lindsay L.
    Fullenkamp, Austin J.
    Hajian, Simin
    Rivas, Marielena
    Gupta, Megha Nayyar
    Quinn, Brian D.
    Aron, Manju
    Desai, Mihir M.
    Aron, Monish
    Oberai, Assad A.
    Gill, Inderbir S.
    Duddalwar, Vinay A.
    EUROPEAN RADIOLOGY, 2021, 31 (02) : 1011 - 1021
  • [3] Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses
    Felix Y. Yap
    Bino A. Varghese
    Steven Y. Cen
    Darryl H. Hwang
    Xiaomeng Lei
    Bhushan Desai
    Christopher Lau
    Lindsay L. Yang
    Austin J. Fullenkamp
    Simin Hajian
    Marielena Rivas
    Megha Nayyar Gupta
    Brian D. Quinn
    Manju Aron
    Mihir M. Desai
    Monish Aron
    Assad A. Oberai
    Inderbir S. Gill
    Vinay A. Duddalwar
    European Radiology, 2021, 31 : 1011 - 1021
  • [4] Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis
    Erdim, Cagri
    Yardimci, Aytul Hande
    Bektas, Ceyda Turan
    Kocak, Burak
    Koca, Sevim Baykal
    Demir, Hale
    Kilickesmez, Ozgur
    ACADEMIC RADIOLOGY, 2020, 27 (10) : 1422 - 1429
  • [5] Differentiating benign and malignant parotid gland tumors using CT images and machine learning algorithms
    Yuan, Yushuai
    Hong, Yue
    Lv, Xiaoyi
    Peng, Jianming
    Li, Min
    Guo, Dong
    Huang, Pan
    Chen, Chen
    Yan, Ziwei
    Chen, Cheng
    Li, Hongmei
    Ma, Hongbing
    Wang, Yan
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2021, 14 (05): : 1864 - 1873
  • [6] Usefulness of CT texture analysis in differentiating benign and malignant renal tumours
    Deng, Y.
    Soule, E.
    Cui, E.
    Samuel, A.
    Shah, S.
    Lall, C.
    Sundaram, C.
    Sandrasegaran, K.
    CLINICAL RADIOLOGY, 2020, 75 (02) : 108 - 115
  • [7] CT-BASED SHAPE AND TEXTURE METRICS INDEPENDENTLY DISCRIMINATE BENIGN FROM MALIGNANT RENAL MASSES
    Yap, Felix
    Shakir, Aliasger
    Varghese, Bino
    Cen, Steven
    Hwang, Darryl
    Lau, Christopher
    Yang, Lindsay
    Liu, Derek
    Rivas, Marielena
    Mohamed, Passant
    Lei, Xiaomeng
    Aron, Manju
    Desai, Mihir
    Gill, Inderbir
    Duddalwar, Vinay
    JOURNAL OF UROLOGY, 2019, 201 (04): : E1164 - E1165
  • [8] Stratification of cystic renal masses into benign and potentially malignant: applying machine learning to the bosniak classification
    Miskin, Nityanand
    Qin, Lei
    Matalon, Shanna A.
    Tirumani, Sree H.
    Alessandrino, Francesco
    Silverman, Stuart G.
    Shinagare, Atul B.
    ABDOMINAL RADIOLOGY, 2021, 46 (01) : 311 - 318
  • [9] Stratification of cystic renal masses into benign and potentially malignant: applying machine learning to the bosniak classification
    Nityanand Miskin
    Lei Qin
    Shanna A. Matalon
    Sree H. Tirumani
    Francesco Alessandrino
    Stuart G. Silverman
    Atul B. Shinagare
    Abdominal Radiology, 2021, 46 : 311 - 318
  • [10] CECT-Based Radiomic Nomogram of Different Machine Learning Models for Differentiating Malignant and Benign Solid-Containing Renal Masses
    Qian, Lu
    Fu, Binhai
    He, Hong
    Liu, Shan
    Lu, Rencai
    JOURNAL OF MULTIDISCIPLINARY HEALTHCARE, 2025, 18 : 421 - 433