Large magnetocaloric effect and giant magnetoresistance in rare earth based intermetallic compound ErAl3: construction of magnetic phase diagram

被引:0
|
作者
Ahmed, Afsar [1 ]
Das, Kalipada [2 ]
Das, I [1 ]
机构
[1] Saha Inst Nucl Phys, CI HBNI, 1-AF Bidhannangar, Kolkata 700064, India
[2] Seth Anandram Jaipuria Coll, Dept Phys, 10-Raja Nabakrishna St, Kolkata 700005, India
关键词
magnetocaloric; magnetoresistances; intermetallics; RESISTIVITY;
D O I
10.1088/1361-648X/ad5068
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This study explores the magnetic and magnetotransport behavior of polycrystalline ErAl3 compound. The polycrystalline compound adopts HoAl3-type structures with the R-3m space group, No. 166-2 and hR60 configurations. Multiple magnetic orderings and two field-induced metamagnetic transitions are observed. ErAl3 exhibits a significant magnetocaloric effect (MCE), -Delta S-M = 15.25 J kg(-1) K-1 and high relative cooling power of 383 J kg(-1) with applied magnetic field change (Delta H) of 70 kOe near the paramagnetic to ferromagnetic transition, showcasing its potential for magnetic refrigeration technology. The compound also demonstrates metallic behavior, with a notable magnetoresistance of 48.5% at 2 K due to the suppression of antiferromagnetism. The magnetic phase diagram reveals four distinct phases influenced by temperature and magnetic field, identified through the study of the MCE.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Giant reversible magnetocaloric effect in antiferromagnetic rare-earth cobaltite GdCoO3
    Dong, Q. Y.
    Hou, K. Y.
    Zhang, X. Q.
    Su, L.
    Wang, L. C.
    Ke, Y. J.
    Yan, H. T.
    Cheng, Z. H.
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (03)
  • [22] Magnetic phase transitions and giant magnetocaloric effect of EuTiO3 nanowires
    Wang, Xinyu
    Zhen, Siqi
    Min, Yi
    Zhou, Pengxia
    Huang, Yanyan
    Li, Jianfeng
    Zhong, Chonggui
    Dong, Zhengchao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 689 : 63 - 68
  • [23] Magnetic and structural phase diagram of antiperovskites ZnCFe3-xCox (0 ≤ x ≤ 3): The combined negative magnetoresistance and large room-temperature magnetocaloric effect in x=0.5
    Kan, X. C.
    Zu, L.
    Wang, B. S.
    Lin, S.
    Wang, X. F.
    Tong, P.
    Song, W. H.
    Sun, Y. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 693 : 895 - 901
  • [24] Magnetic phase diagram of PrPb3 investigated by specific heat and magnetocaloric effect
    Vollmer, R
    Goll, G
    Pfleiderer, C
    Löhneysen, HV
    Maple, MB
    Canfield, PC
    PHYSICA B-CONDENSED MATTER, 2002, 312 : 855 - 857
  • [25] Magnetic phase diagram of RbMnBr3, investigated by specific heat and magnetocaloric effect
    Perez, F
    Werner, T
    Wosnitza, J
    Von Lohneysen, H
    Tanaka, H
    PHYSICAL REVIEW B, 1998, 58 (14): : 9316 - 9320
  • [26] Magnetic and magnetocaloric properties of the new rare-earth-transition-metal intermetallic compound Gd3Co29Ge4B10
    Hill, P.
    Dubenko, Igor
    Samanta, Tapas
    Quetz, Abdiel
    Ali, Naushad
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
  • [27] Magnetic properties and large magnetocaloric effect in Ho3Pd2 compound
    Wu, X. F.
    Guo, C.
    Wang, J.
    Deng, J. Q.
    Du, Y. S.
    Rao, G. H.
    Du, Z.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 482 : 168 - 172
  • [28] Anisotropic giant magnetoresistance, magnetocaloric effect, and magnetic anomalies in single crystalline Tb2BdSi3
    Majumdar, S
    Sampathkumaran, EV
    Paulose, PL
    Bitterlich, H
    Löser, W
    Behr, G
    PHYSICAL REVIEW B, 2000, 62 (21) : 14207 - 14211
  • [29] LARGE MAGNETOCALORIC EFFECT NEAR WATER BOILING POINT IN RARE-EARTH BASED INTERMETALLICS
    Eichenberger, L.
    Mazet, T.
    Verniere, A.
    6TH IIR/IIF INTERNATIONAL CONFERENCE ON MAGNETIC REFRIGERATION (THERMAG VI), 2014, : 121 - 122
  • [30] Magnetocaloric effect and magnetic phase transitions in nanocrystalline rare-earth metals: Tb, Dy, and Gd
    Pankratov N.Yu.
    Zvonov A.I.
    Karpenkov D.Yu.
    Smarzhevskaya A.I.
    Karpenkov A.Yu.
    Nikitin S.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2013, 77 (10) : 1268 - 1271