EFFICIENT ERROR AND VARIANCE ESTIMATION FOR RANDOMIZED MATRIX COMPUTATIONS

被引:0
|
作者
Epperly, Ethan n. [1 ]
Tropp, Joel a. [1 ]
机构
[1] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 01期
关键词
jackknife resampling; low-rank approximation; error estimation; randomized algorithms;
D O I
10.1137/23M1558537
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave -one -out error estimator for randomized low -rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low -rank approximation algorithms such as the randomized SVD and randomized Nystro"\m approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.
引用
收藏
页码:A508 / A528
页数:21
相关论文
共 50 条