Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020

被引:0
|
作者
Ying Na [1 ,2 ]
Chaofan Li [3 ,4 ]
Riyu Lu [5 ,4 ]
机构
[1] School of Atmospheric Science and Remote Sensing, Wuxi University
[2] Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration(ECSS-CMA), Wuxi University
[3] Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences
[4] College of Earth and Planetary Sciences, University of Chinese Academy of Sciences
[5] State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of
关键词
孤立深对流; 青藏高原; 气候特征; 降水贡献; 极端降水;
D O I
暂无
中图分类号
P426.6 [降水];
学科分类号
摘要
本文利用卫星观测资料,研究了2001–2020年雨季(6–9月)青藏高原上孤立深对流(Isolated deep convections,IDCs)的气候特征. IDCs定义为比中尺度对流系统(Mesoscale convective systems, MCSs)时空尺度小的对流.结果显示,每年雨季青藏高原上平均的IDC数量为54.2个,主要分布在高原的南部. IDCs的初始时刻呈现明显的日循环,在下午14–15时为峰值,在上午9–10时为谷值.大部分IDCs持续时间在5小时以内,超过一半的IDCs仅持续1小时.IDCs的冷云平均面积约为7422.9km2,其中包含65%的降水面积. IDC面积越大,包含的强降水范围也越大. IDCs对青藏高原总降水的贡献约为20%–30%,对极端降水贡献约为30%–40%,在7月和8月的占比大于6月和9月.在空间分布方面,青藏高原上IDCs对总降水和极端降水的贡献大于周围平原地区.青藏高原上IDCs对降水的贡献大于MCSs,表明IDCs在该地区起着重要作用.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [21] Comparative Analysis of the Characteristics of Rainy Season Raindrop Size Distributions in Two Typical Regions of the Tibetan Plateau
    Gaili Wang
    Ran Li
    Jisong Sun
    Xiangde Xu
    Renran Zhou
    Liping Liu
    Advances in Atmospheric Sciences, 2022, 39 : 1062 - 1078
  • [22] Comparative Analysis of the Characteristics of Rainy Season Raindrop Size Distributions in Two Typical Regions of the Tibetan Plateau
    Gaili WANG
    Ran LI
    Jisong SUN
    Xiangde XU
    Renran ZHOU
    Liping LIU
    AdvancesinAtmosphericSciences, 2022, 39 (07) : 1062 - 1078
  • [23] Early onset of rainy season suppresses glacier melt: a case study on Zhadang glacier, Tibetan Plateau
    Kang, Shichang
    Chen, Feng
    Gao, Tanguang
    Zhang, Yongjun
    Yang, Wei
    Yu, Wusheng
    Yao, Tandong
    JOURNAL OF GLACIOLOGY, 2009, 55 (192) : 755 - 758
  • [24] Evaluating warming trend over the tibetan plateau based on remotely sensed air temperature from 2001 to 2020
    Xin, Yan
    Xu, Yongming
    Tong, Xudong
    Mo, Yaping
    Liu, Yonghong
    Zhu, Shanyou
    CLIMATIC CHANGE, 2024, 177 (08)
  • [25] Monthly variation of local land-atmosphere coupling over the Tibetan Plateau in the rainy season and its relationship with the South Asian summer monsoon
    Sun, Genhou
    Sun, Fanglin
    Wei, Wei
    Yang, Song
    Hu, Zeyong
    Ma, Yaoming
    Xie, Zhipeng
    Wang, Jiemin
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2023, 43 (06) : 2481 - 2503
  • [26] Spatial and Temporal Variations in the Rainy Season Onset over the Qinghai-Tibet Plateau
    Hu, Yuekai
    Xu, Junfeng
    Huang, Yuxin
    Zhou, Yinying
    Pang, Yuwen
    Shi, Zhou
    Chen, Xiaojun
    WATER, 2019, 11 (10)
  • [27] Impacts of ENSO and IOD on Snow Depth Over the Tibetan Plateau: Roles of Convections Over the Western North Pacific and Indian Ocean
    Jiang, Xingwen
    Zhang, Tuantuan
    Tam, Chi-Yung
    Chen, Junwen
    Lau, Ngar-Cheung
    Yang, Song
    Wang, Zunya
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (22) : 11961 - 11975
  • [28] Interannual variation of the onset of the Tibetan Plateau rainy season and its relationship with the sea surface temperature in the North Pacific
    Wang, Zunya
    Jiang, Xingwen
    Ke, Zongjian
    Song, Yafang
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2023, 43 (10) : 4662 - 4676
  • [29] Interannual variation of precipitation over the Hengduan Mountains during rainy season
    Dong, Danhong
    Huang, Gang
    Tao, Weichen
    Wu, Renguang
    Hu, Kaiming
    Li, Chaofan
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (04) : 2112 - 2125
  • [30] The Extraordinary Rainfall over the Eastern Periphery of the Tibetan Plateau in August 2020
    Xuelin Hu
    Weihua Yuan
    Rucong Yu
    Advances in Atmospheric Sciences, 2021, 38 : 2097 - 2107