Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020

被引:0
|
作者
Ying Na [1 ,2 ]
Chaofan Li [3 ,4 ]
Riyu Lu [5 ,4 ]
机构
[1] School of Atmospheric Science and Remote Sensing, Wuxi University
[2] Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration(ECSS-CMA), Wuxi University
[3] Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences
[4] College of Earth and Planetary Sciences, University of Chinese Academy of Sciences
[5] State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of
关键词
孤立深对流; 青藏高原; 气候特征; 降水贡献; 极端降水;
D O I
暂无
中图分类号
P426.6 [降水];
学科分类号
摘要
本文利用卫星观测资料,研究了2001–2020年雨季(6–9月)青藏高原上孤立深对流(Isolated deep convections,IDCs)的气候特征. IDCs定义为比中尺度对流系统(Mesoscale convective systems, MCSs)时空尺度小的对流.结果显示,每年雨季青藏高原上平均的IDC数量为54.2个,主要分布在高原的南部. IDCs的初始时刻呈现明显的日循环,在下午14–15时为峰值,在上午9–10时为谷值.大部分IDCs持续时间在5小时以内,超过一半的IDCs仅持续1小时.IDCs的冷云平均面积约为7422.9km2,其中包含65%的降水面积. IDC面积越大,包含的强降水范围也越大. IDCs对青藏高原总降水的贡献约为20%–30%,对极端降水贡献约为30%–40%,在7月和8月的占比大于6月和9月.在空间分布方面,青藏高原上IDCs对总降水和极端降水的贡献大于周围平原地区.青藏高原上IDCs对降水的贡献大于MCSs,表明IDCs在该地区起着重要作用.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [1] Isolated deep convections over the Tibetan Plateau in the rainy season during 2001-2020
    Na, Ying
    Li, Chaofan
    Lu, Riyu
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2024, 17 (05)
  • [2] Spatiotemporal variations of precipitation during the rainy season over the three-rivers headwater region of tibetan plateau from 1990 to 2020
    Zhu, Jingshu
    Liu, Huizhi
    Li, Yaohui
    Xu, Lujun
    Du, Qun
    Meng, Xianhong
    Liu, Yang
    CLIMATE DYNAMICS, 2023, 61 (11-12) : 5551 - 5572
  • [3] The westerly winds control the zonal migration of rainy season over the Tibetan Plateau
    Jiang, Xingwen
    Cai, Fenying
    Li, Zhenning
    Wang, Zunya
    Zhang, Tuantuan
    COMMUNICATIONS EARTH & ENVIRONMENT, 2023, 4 (01):
  • [4] Spatiotemporal variations of precipitation during the rainy season over the three-rivers headwater region of tibetan plateau from 1990 to 2020
    Jingshu Zhu
    Huizhi Liu
    Yaohui Li
    Lujun Xu
    Qun Du
    Xianhong Meng
    Yang Liu
    Climate Dynamics, 2023, 61 : 5551 - 5572
  • [5] The westerly winds control the zonal migration of rainy season over the Tibetan Plateau
    Xingwen Jiang
    Fenying Cai
    Zhenning Li
    Zunya Wang
    Tuantuan Zhang
    Communications Earth & Environment, 4
  • [6] Major Moisture Pathways and Their Importance to Rainy Season Precipitation over the Sanjiangyuan Region of the Tibetan Plateau
    Zhang, Yu
    Huang, Wenyu
    Zhong, Deyu
    JOURNAL OF CLIMATE, 2019, 32 (20) : 6837 - 6857
  • [7] The objective monitoring method of the Tibetan Plateau rainy season and its changing trend over the past 6 decades
    Wang ZunYa
    Jiang XingWen
    Ke ZongJian
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2023, 66 (02): : 505 - 517
  • [8] Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau
    Sun, Genhou
    Hu, Zeyong
    Ma, Yaoming
    Xie, Zhipeng
    Wang, Jiemin
    Yang, Song
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2020, 24 (12) : 5937 - 5951
  • [9] Weakening amplification of grassland greening to transpiration fraction of evapotranspiration over the Tibetan Plateau during 2001-2020
    Jin, Zheng
    You, Qinglong
    Zuo, Zhiyan
    Li, Mingcai
    Sun, Guodong
    Pepin, Nick
    Wang, Lixin
    AGRICULTURAL AND FOREST METEOROLOGY, 2023, 341
  • [10] Effect of Indian Ocean SST on Tibetan Plateau Precipitation in the Early Rainy Season
    Chen, Xiaoyang
    You, Qinglong
    JOURNAL OF CLIMATE, 2017, 30 (22) : 8973 - 8985