SMALL DATA SOLUTIONS OF 2-D QUASILINEAR WAVE EQUATIONS UNDER NULL CONDITIONS
被引:0
|
作者:
刘颖博
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics and IMS, Nanjing University
Department of Mathematics, China Pharmaceutical UniversityDepartment of Mathematics and IMS, Nanjing University
刘颖博
[1
,2
]
Ingo WITT
论文数: 0引用数: 0
h-index: 0
机构:
Mathematical Institute,University ofDepartment of Mathematics and IMS, Nanjing University
Ingo WITT
[3
]
机构:
[1] Department of Mathematics and IMS, Nanjing University
[2] Department of Mathematics, China Pharmaceutical University
2 Abstract For the 2-D quasilinear wave equation(?_t2-?x)u+2∑ij=0gij(?u)?iju = 0 satisfying i,j=0 null condition or both null conditions, a blowup or global existence result has been shown by Alinhac. In this paper, we consider a more general 2-D quasilinear wave equation(?_t2-?x)u+2∑ij=0gij(?u)?iju = 0 satisfying null conditions with small initial data and the coefficients i,j=0 depending simultaneously on u and ?u. Through construction of an approximate solution,combined with weighted energy integral method, a quasi-global or global existence solution are established by continuous induction.
机构:
Courant Inst Math Sci, New York, NY USACourant Inst Math Sci, New York, NY USA
Deng, Yu
Pusateri, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Princeton, NJ 08544 USA
Univ Toronto, 40 St George St,Room 6218, Toronto, ON M5S 2E4, CanadaCourant Inst Math Sci, New York, NY USA
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Hou, Fei
Tao, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Tao, Fei
Yin, Huicheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Nanjing Normal Univ, Math Inst, Nanjing 210023, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
机构:
Univ Paris 07, Unite Format & Rech Math, F-75205 Paris 13, FranceUniv Paris 07, Unite Format & Rech Math, F-75205 Paris 13, France
Kuksin, Sergei
Nadirashvili, Nikolai
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, F-13453 Marseille, France
Univ Aix Marseille 1, Lab Anal Topol & Probabilites, F-13453 Marseille, FranceUniv Paris 07, Unite Format & Rech Math, F-75205 Paris 13, France