The paper explores the connection of Graph-Lagrangians and its maximum cliques for 3-uniform hypergraphs.Motzkin and Straus showed that the Graph-Lagrangian of a graph is the Graph-Lagrangian of its maximum cliques.This connection provided a new proof of Turán classical result on the Turán density of complete graphs.Since then,Graph-Lagrangian has become a useful tool in extremal problems for hypergraphs.Peng and Zhao attempted to explore the relationship between the Graph-Lagrangian of a hypergraph and the order of its maximum cliques for hypergraphs when the number of edges is in certain range.They showed that if G is a 3-uniform graph with m edges containing a clique of order t-1,then λ(G)=λ([t-1](3)) provided (t-13)≤m≤(t-13)+t-22.They also conjectured:If G is an r-uniform graph with m edges not containing a clique of order t-1,then λ(G)<λ([t-1](r)) provided (t-1r)≤ m ≤(t-1r)+(t-2r-1).It has been shown that to verify this conjecture for 3-uniform graphs,it is sufficient to verify the conjecture for left-compressed 3-uniform graphs with m=t-13+t-22.Regarding this conjecture,we show: If G is a left-compressed 3-uniform graph on the vertex set [t] with m edges and |[t-1](3)\E(G)|=p,then λ(G)<λ([t-1](3)) provided m=(t-13)+(t-22) and t≥17p/2+11.