KAM TORI FOR DEFOCUSING KDV-MKDV EQUATION

被引:0
|
作者
崔文艳
弭鲁芳
尹枥
机构
[1] CollegeofScience,BinzhouUniversity
关键词
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-uxxx + 6 uux + 6 u2 ux on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.
引用
收藏
页码:243 / 258
页数:16
相关论文
共 50 条
  • [31] All exact traveling wave solutions of the combined KdV-mKdV equation
    Huang, Yong
    Wu, Yonghong
    Meng, Fanning
    Yuan, Wenjun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [32] A LATTICE BGK MODEL FOR SIMULATING SOLITARY WAVES OF THE COMBINED KdV-MKDV EQUATION
    Ma, Changfeng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (04): : 589 - 597
  • [33] Analytic Solutions of the Space-Time Fractional Combined KdV-mKdV Equation
    Abdel-Salam, Emad A. -B.
    Al-Muhiameed, Zeid I. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [34] Solitary wave solutions and kink wave solutions for a generalized KDV-mKDV equation
    Song, Ming
    Hou, Xuejiong
    Cao, Jun
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5942 - 5948
  • [35] A generalized modified F-expansion method for solving Kdv-mKdv equation
    Cai, Guoliang
    Ma, Kun
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 30 - 35
  • [36] KdV-mKdV方程的精确解
    王艳红
    王振辉
    毛星星
    河南理工大学学报(自然科学版), 2013, 32 (01) : 118 - 121
  • [37] KdV-mKdV方程的新行波解
    崔文艳
    尹枥
    滨州学院学报, 2016, 32 (04) : 46 - 50
  • [38] Analytical and numerical solution of a coupled KdV-MKdV system
    Halim, AA
    Leble, SB
    CHAOS SOLITONS & FRACTALS, 2004, 19 (01) : 99 - 108
  • [39] Exact soliton solutions of the variable coefficient KdV-MKdV equation with three arbitrary functions
    Yan, Zhenya
    Zhang, Hongqing
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 1999, 10 (10): : 1957 - 1961
  • [40] A Note on the Semi-Inverse Method and a Variational Principle for the Generalized KdV-mKdV Equation
    Yao, Li
    Yang, Yun-Jie
    Zhou, Xing-Wei
    ABSTRACT AND APPLIED ANALYSIS, 2013,