The principle and amelioration of lithium plating in fast-charging lithium-ion batteries

被引:0
|
作者
Yi Yang [1 ,2 ]
XiaLin Zhong [3 ]
Lei Xu [1 ,2 ]
ZhuoLin Yang [1 ]
Chong Yan [2 ,4 ]
JiaQi Huang [1 ,2 ]
机构
[1] School of Materials Science and Engineering, Beijing Institute of Technology
[2] Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology
[3] Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University
[4] Yangtze River Delta Graduate School of Beijing Institute of
关键词
D O I
暂无
中图分类号
TM912 [蓄电池]; TB306 [];
学科分类号
摘要
Fast charging is restricted primarily by the risk of lithium(Li) plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li+.Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI) is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI) is verified experimentally.In order to facilitate the transfer of Li+ among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH) is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.
引用
收藏
页码:453 / 459
页数:7
相关论文
共 50 条
  • [31] Fast-charging graphite anode for lithium-ion batteries: Fundamentals, strategies, and outlooks
    Yan, Xin
    Jiao, Jinying
    Ren, Jingke
    Luo, Wen
    Mai, Liqiang
    APPLIED PHYSICS LETTERS, 2024, 124 (04)
  • [32] Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries
    Zhong C.
    Weng S.
    Wang Z.
    Zhan C.
    Wang X.
    Nano Energy, 2023, 117
  • [33] Advanced Integrated Fast-Charging Protocol for Lithium-Ion Batteries by Considering Degradation
    Kim, Minsu
    Kim, Junghwan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6786 - 6796
  • [34] Optimizing Structural Patterns for 3D Electrodes in Lithium-Ion Batteries for Enhanced Fast-Charging Capability and Reduced Lithium Plating
    Sterzl, Yannic
    Pfleging, Wilhelm
    BATTERIES-BASEL, 2024, 10 (05):
  • [35] Fast-charging lithium-ion batteries: Synergy of carbon nanotubes and laser ablation
    Vennam, Geetika
    Singh, Avtar
    Dunlop, Alison R.
    Islam, Saiful
    Weddle, Peter J.
    Mak, Bianca Yi Wen
    Tancin, Ryan
    Evans, Michael C.
    Trask, Stephen E.
    Dufek, Eric J.
    Colclasure, Andrew M.
    Finegan, Donal P.
    Smith, Kandler
    Jansen, Andrew N.
    Gering, Kevin L.
    Yang, Zhenzhen
    Tanim, Tanvir R.
    JOURNAL OF POWER SOURCES, 2025, 636
  • [36] Conductive TiN network-assisted fast-charging of lithium-ion batteries
    Jeong, Won Ung
    Shin, Hong Rim
    Choi, Ilyoung
    Jeong, Jae Seok
    Suh, Joo Hyeong
    Kim, Dong Ki
    Kim, Youngugk
    Lee, Jong-Won
    Park, Min-Sik
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (03) : 2084 - 2092
  • [37] Electrode and Electrolyte Design Strategies Toward Fast-Charging Lithium-Ion Batteries
    Li, Jianwei
    Guo, Changyuan
    Tao, Lijuan
    Meng, Jiashen
    Xu, Xiaoming
    Liu, Fang
    Wang, Xuanpeng
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [38] Design of Localized High Concentration Electrolytes for Fast-Charging Lithium-Ion Batteries
    Ober, Seamus
    Manthiram, Arumugam
    SMALL, 2024, 20 (47)
  • [39] Recent advancements and perspectives of fast-charging composite anodes for lithium-ion batteries
    Zeng, Qinghui
    Dong, Yongteng
    Chen, Yuanmao
    Yue, Xinyang
    Liang, Zheng
    SCIENCE CHINA-CHEMISTRY, 2024, : 3952 - 3963
  • [40] Recent advancements and perspectives of fast-charging composite anodes for lithium-ion batteries
    Qinghui Zeng
    Yongteng Dong
    Yuanmao Chen
    Xinyang Yue
    Zheng Liang
    Science China(Chemistry), 2024, 67 (12) : 3952 - 3963