SOME PROBLEMS OF FRACTIONAL PARTIAL DIFFERENCE DIFFUSION EQUATIONS

被引:3
|
作者
Jinfa Cheng
机构
[1] DeptofMath,XiamenUniversity
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This paper mainly discusses the problems of fractional variational problems and fractional diffusion problems using fractional difference and summation.Through the Euler finite difference method we get a variational formulation of the variation problem and the discrete solution to the time-fractional and space-fractional difference equation using separating variables method and two-side Z-transform method.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [41] On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay
    Bunjong Kaewwisetkul
    Thanin Sitthiwirattham
    Advances in Difference Equations, 2017
  • [42] Maximum norm error analysis of difference schemes for fractional diffusion equations
    Ren, Jincheng
    Sun, Zhi-zhong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 299 - 314
  • [43] SECOND ORDER ACCURACY FINITE DIFFERENCE METHODS FOR FRACTIONAL DIFFUSION EQUATIONS
    Takeuchi, Yuki
    Suda, Reiji
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4, 2014,
  • [44] A characteristic difference method for the transient fractional convection-diffusion equations
    Su, Lijuan
    Wang, Wenqia
    Wang, Hong
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (08) : 946 - 960
  • [45] A finite difference method for fractional diffusion equations with Neumann boundary conditions
    Szekeres, Bela J.
    Izsak, Ferenc
    OPEN MATHEMATICS, 2015, 13 : 581 - 600
  • [46] A compact finite difference scheme for the fractional sub-diffusion equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) : 586 - 595
  • [47] Finite difference scheme for the time-space fractional diffusion equations
    Cao, Jianxiong
    Li, Changpin
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1440 - 1456
  • [48] Control of fractional diffusion problems via dynamic programming equations
    Alla, Alessandro
    D'Elia, Marta
    Glusa, Christian
    Oliveira, Hugo
    arXiv, 2022,
  • [49] ON INITIAL AND TERMINAL VALUE PROBLEMS FOR FRACTIONAL NONCLASSICAL DIFFUSION EQUATIONS
    Nguyen Huy Tuan
    Caraballo, Tomas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (01) : 143 - 161
  • [50] CAUCHY PROBLEMS FOR THE TIME-FRACTIONAL DEGENERATE DIFFUSION EQUATIONS
    Borikhanov, M. B.
    Smadiyeva, A. G.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 117 (01): : 15 - 23