In this paper, we investigate the partial regularity of suitable weak solutions to the multidimensional stationary Navier Stokes equations with fractional power of the Laplacian (-△)α < 1 and α≠ 1/2). It is shown that the n + 2-6α(3 ≤ n ≤ 5) dimensional Hausdorff measure of the set of the possible singular points of suitable weak solutions to the system is zero, which extends a recent result of Tang and Yu [19] to four and five dimension. Moreover, the pressure in e-regularity criteria is an improvement of corresponding results in [1, 13, 18, 20].