Global Phase Portraits of Quadratic Systems with a Complex Ellipse as Invariant Algebraic Curve

被引:0
|
作者
Jaume LLIBRE [1 ]
Claudia VALLS [2 ]
机构
[1] Departament de Matematiques,Universitat Autonoma de Barcelona
[2] Departamento de Matematica, Instituto Superior Tecnico,Universidade de
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, we study a new class of quadratic systems and classify all its phase portraits.More precisely, we characterize the class of all quadratic polynomial differential systems in the plane having a complex ellipse x2+ y2+ 1 = 0 as invariant algebraic curve. We provide all the different topological phase portraits that this class exhibits in the Poincar′e disc.
引用
收藏
页码:801 / 811
页数:11
相关论文
共 50 条
  • [41] Phase portraits of the complex Abel polynomial differential systems
    Llibre, Jaume
    Valls, Claudia
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [42] Global Dynamical Behavior of FitzHugh–Nagumo Systems with Invariant Algebraic Surfaces
    Liwei Zhang
    Jiang Yu
    Xiang Zhang
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [43] Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces
    Wu, Kesheng
    Zhang, Xiang
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 244 (01) : 25 - 35
  • [44] Bifurcation Diagram and Global Phase Portraits of a Family of Quadratic Vector Fields in Class I
    Jia, Man
    Chen, Haibo
    Chen, Hebai
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [45] Bifurcation Diagram and Global Phase Portraits of a Family of Quadratic Vector Fields in Class I
    Man Jia
    Haibo Chen
    Hebai Chen
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [46] Global phase portraits of the generalized van der Pol systems
    Llibre, Jaume
    Valls, Claudia
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [47] Global Phase Portraits of Separable Polynomial Rigid Systems with a Center
    Chen, Hebai
    Feng, Zhaosheng
    Zhang, Rui
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (01)
  • [48] Classification of Invariant Algebraic Curves and Nonexistence of Algebraic Limit Cycles in Quadratic Systems from Family (I) of the Chinese Classification
    Demina, Maria, V
    Valls, Claudia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (04):
  • [49] Comments on 'Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces'
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 266 : 80 - 82
  • [50] Global Dynamical Behavior of FitzHugh-Nagumo Systems with Invariant Algebraic Surfaces
    Zhang, Liwei
    Yu, Jiang
    Zhang, Xiang
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)