Diskcyclicity of Sets of Operators and Applications

被引:0
|
作者
Mohamed AMOUCH
Otmane BENCHIHEB
机构
[1] UniversityChouaibDoukkali,DepartmentofMathematics,FacultyofscienceEljadida
关键词
D O I
暂无
中图分类号
O19 [动力系统理论];
学科分类号
070104 ; 0711 ; 071101 ;
摘要
In this paper, we introduce and study the diskcyclicity and disk transitivity of a set of operators. We establish a diskcyclicity criterion and give the relationship between this criterion and the diskcyclicity. As applications, we study the diskcyclicty of C0-semigroups and C-regularized groups.We show that a diskcyclic C0-semigroup exists on a complex topological vector space X if and only if dim(X) = 1 or dim(X) = ∞ and we prove that diskcyclicity and disk transitivity of C0-semigroups(resp C-regularized groups) are equivalent.
引用
收藏
页码:1203 / 1220
页数:18
相关论文
共 50 条
  • [31] On closure operators of Jonsson sets
    Ulbrikht, O. I.
    Urken, G. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 114 (02): : 211 - 220
  • [32] PEAK SETS AND SUBNORMAL OPERATORS
    PUTNAM, CR
    ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (02) : 388 - 394
  • [33] Complexity of Operators on Compact Sets
    Zhao, Xishun
    Mueller, Norbert
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2008, 202 : 101 - 119
  • [34] SUPPORTING SETS OF SUBLINEAR OPERATORS
    LINKE, YE
    DOKLADY AKADEMII NAUK SSSR, 1972, 207 (03): : 531 - &
  • [35] On the density and transitivity of sets of operators
    Ansari, Mohammad
    Khani-Robati, Bahram
    Hedayatian, Karim
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (01) : 181 - 189
  • [36] Maximal operators and Canter sets
    Hare, KE
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (03): : 330 - 342
  • [37] SETS OF POSITIVE OPERATORS WITH SUPREMA
    ANDERSON, WN
    MORLEY, TD
    TRAPP, GE
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) : 207 - 212
  • [38] Residuality of Sets of Hypercyclic Operators
    Alejandro Rodríguez-Martínez
    Integral Equations and Operator Theory, 2012, 72 : 301 - 308
  • [39] On isospectral sets of Jacobi operators
    Gesztesy, F
    Krishna, M
    Teschl, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (03) : 631 - 645
  • [40] Binding Operators for Nominal Sets
    de Amorim, Arthur Azevedo
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2016, 325 : 3 - 27