Tame Kernels of Pure Cubic Fields

被引:1
|
作者
Xiao Yun CHENG
机构
[1] SchoolofScience,NanjingUniversityofAeronauticsandAstronautics
关键词
D O I
暂无
中图分类号
O153.3 [环论];
学科分类号
摘要
In this paper, we study the p-rank of the tame kernels of pure cubic fields. In particular, we prove that for a fixed positive integer m, there exist infinitely many pure cubic fields whose 3-rank of the tame kernel equal to m. As an application, we determine the 3-rank of their tame kernels for some special pure cubic fields.
引用
收藏
页码:771 / 780
页数:10
相关论文
共 50 条
  • [21] On the odd part of tame kernels of biquadratic number fields
    Zhou, Haiyan
    ACTA ARITHMETICA, 2010, 144 (03) : 275 - 286
  • [22] The shortest vector problem and tame kernels of cyclotomic fields
    Long, Zhang
    Kejian, Xu
    Zhaopeng, Dai
    Chaochao, Sun
    JOURNAL OF NUMBER THEORY, 2021, 227 : 308 - 329
  • [23] The structure of the tame kernels of quadratic number fields (I)
    Qin, HR
    ACTA ARITHMETICA, 2004, 113 (03) : 203 - 240
  • [24] Tame and wild kernels of quadratic imaginary number fields
    Browkin, J
    Gangl, H
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 291 - 305
  • [25] On tame kernels and second regulators of number fields and their subfields
    Sun Chaochao
    Xu Kejian
    JOURNAL OF NUMBER THEORY, 2017, 171 : 252 - 274
  • [26] The structure of the tame kernels of quadratic number fields (II)
    Yin, XB
    Qin, HR
    Zhu, QS
    ACTA ARITHMETICA, 2005, 116 (03) : 217 - 262
  • [27] Tame kernels and second regulators of number fields and their subfields
    Browkin, Jerzy
    Gangl, Herbert
    JOURNAL OF K-THEORY, 2013, 12 (01) : 137 - 165
  • [28] The structure of the tame kernels of quadratic number fields (III)
    Yin, Xiaobin
    Qin, Hourong
    Zhu, Qunsheng
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 1012 - 1033
  • [29] On the 4-rank of tame kernels of quadratic number fields
    Guo, Xuejun
    ACTA ARITHMETICA, 2009, 136 (02) : 135 - 149
  • [30] The densities of 4-ranks of tame kernels for quadratic fields
    Yue, Q
    Yu, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 567 : 151 - 173