Non-Nehari Manifold Method for Periodic Discrete Superlinear Schr(o|¨)dinger Equation

被引:1
|
作者
Xian Hua TANG
机构
[1] SchoolofMathematicsandStatistics,CentralSouthUniversity
关键词
D O I
暂无
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
摘要
We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条
  • [41] Solving a Discrete Nonlinear Schrödinger Equation with a Trap
    V. N. Likhachev
    G. A. Vinogradov
    N. S. Erikhman
    Russian Journal of Physical Chemistry B, 2020, 14 : 391 - 394
  • [42] Solutions of the Discrete Nonlinear Schrödinger Equation with a Trap
    V. N. Likhachev
    G. A. Vinogradov
    Theoretical and Mathematical Physics, 2019, 201 : 1771 - 1778
  • [43] Ballistic Motion in One-Dimensional Quasi-Periodic Discrete Schrödinger Equation
    Zhiyan Zhao
    Communications in Mathematical Physics, 2016, 347 : 511 - 549
  • [44] Homoclinic solutions for discrete fractional p-Laplacian equation via the Nehari manifold method
    Bouabdallah, Mohamed
    El Ahmadi, Mahmoud
    Lamaizi, Anass
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3359 - 3375
  • [45] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [46] Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0
    Minbo Yang
    Wenxiong Chen
    Yanheng Ding
    Acta Applicandae Mathematicae, 2010, 110 : 1475 - 1488
  • [47] Gap Solitons in Periodic Discrete Schrödinger Equations with Nonlinearity
    Haiping Shi
    Acta Applicandae Mathematicae, 2010, 109 : 1065 - 1075
  • [48] New Results for Periodic Discrete Nonlinear SchröDinger Equations
    Xu, Xiaoliang
    Chen, Huiwen
    Ouyang, Zigen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5768 - 5780
  • [49] Nonlinear Schrödinger Equation and the Hyperbolization Method
    A. D. Yunakovsky
    Computational Mathematics and Mathematical Physics, 2022, 62 : 1112 - 1130
  • [50] BIFURCATIONS OF PERIODIC ORBITS IN THE GENERALISED NONLINEAR SCHRÓDINGER EQUATION
    Bandara, Ravindra I.
    Giraldo, Andrus
    Broderick, Neil G. R.
    Krauskopf, Bernd
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024,