Black-box membership inference attacks based on shadow model

被引:0
|
作者
Han Zhen
Zhou Wen'an
Han Xiaoxuan
Wu Jie
机构
[1] SchoolofComputerScience,BeijingUniversityofPostsandTelecommunications
关键词
D O I
暂无
中图分类号
TP181 [自动推理、机器学习]; TP309 [安全保密];
学科分类号
081201 ; 0839 ; 1402 ;
摘要
Membership inference attacks on machine learning models have drawn significant attention. While current research primarily utilizes shadow modeling techniques, which require knowledge of the target model and training data, practical scenarios involve black-box access to the target model with no available information. Limited training data further complicate the implementation of these attacks. In this paper, we experimentally compare common data enhancement schemes and propose a data synthesis framework based on the variational autoencoder generative adversarial network(VAE-GAN) to extend the training data for shadow models. Meanwhile, this paper proposes a shadow model training algorithm based on adversarial training to improve the shadow model's ability to mimic the predicted behavior of the target model when the target model's information is unknown. By conducting attack experiments on different models under the black-box access setting, this paper verifies the effectiveness of the VAE-GAN-based data synthesis framework for improving the accuracy of membership inference attack. Furthermore, we verify that the shadow model, trained by using the adversarial training approach, effectively improves the degree of mimicking the predicted behavior of the target model. Compared with existing research methods, the method proposed in this paper achieves a 2% improvement in attack accuracy and delivers better attack performance.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Beyond the black-box model
    不详
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2015, 8 (3-4): : 309 - 328
  • [32] Toward Black-box Image Extraction Attacks on RBF SVM Classification Model
    Clark, Michael R.
    Swartz, Peter
    Alten, Andrew
    Salih, Raed M.
    2020 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC 2020), 2020, : 394 - 399
  • [33] Partial Retraining Substitute Model for Query-Limited Black-Box Attacks
    Park, Hosung
    Ryu, Gwonsang
    Choi, Daeseon
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 19
  • [34] Black-box Adversarial Attacks on Video Recognition Models
    Jiang, Linxi
    Ma, Xingjun
    Chen, Shaoxiang
    Bailey, James
    Jiang, Yu-Gang
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 864 - 872
  • [35] Black-box Adversarial Attacks in Autonomous Vehicle Technology
    Kumar, K. Naveen
    Vishnu, C.
    Mitra, Reshmi
    Mohan, C. Krishna
    2020 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR): TRUSTED COMPUTING, PRIVACY, AND SECURING MULTIMEDIA, 2020,
  • [36] AdvMind: Inferring Adversary Intent of Black-Box Attacks
    Pang, Ren
    Zhang, Xinyang
    Ji, Shouling
    Luo, Xiapu
    Wang, Ting
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1899 - 1907
  • [37] GeoDA: a geometric framework for black-box adversarial attacks
    Rahmati, Ali
    Moosavi-Dezfooli, Seyed-Mohsen
    Frossard, Pascal
    Dai, Huaiyu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 8443 - 8452
  • [38] Black-box adversarial attacks by manipulating image attributes
    Wei, Xingxing
    Guo, Ying
    Li, Bo
    INFORMATION SCIENCES, 2021, 550 : 285 - 296
  • [39] Physical Black-Box Adversarial Attacks Through Transformations
    Jiang, Wenbo
    Li, Hongwei
    Xu, Guowen
    Zhang, Tianwei
    Lu, Rongxing
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (03) : 964 - 974
  • [40] A review of black-box adversarial attacks on image classification
    Zhu, Yanfei
    Zhao, Yaochi
    Hu, Zhuhua
    Luo, Tan
    He, Like
    NEUROCOMPUTING, 2024, 610