BLOW-UP CRITERION OF CLASSICAL SOLUTIONS FOR THE INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS

被引:0
|
作者
高真圣 [1 ]
谭忠 [2 ]
机构
[1] School of Mathematical Sciences,Huaqiao University
[2] School of Mathematical Sciences,Xiamen
关键词
D O I
暂无
中图分类号
TQ021.1 [流体力学过程及原理];
学科分类号
摘要
In this paper,we consider the short time classical solution to a simplified hydrodynamic flow modeling incompressible,nematic liquid crystal materials in R3. We establish a criterion for possible breakdown of such solutions at a finite time. More precisely,if(u,d)is smooth up to time T provided that ∫0T||▽×u(t,·)||BMO(R3)+||▽d(t,·)||L4(R3)8dt<∞.
引用
收藏
页码:1632 / 1638
页数:7
相关论文
共 50 条
  • [31] Blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity
    Wang, Yu-Zhu
    Wang, Yin-Xia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (01) : 60 - 68
  • [32] Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations
    Li, Qiang
    Yuan, Baoquan
    AIMS MATHEMATICS, 2020, 5 (01): : 619 - 628
  • [33] A blow-up criterion for incompressible hydrodynamic flow of liquid crystals in dimension two
    Huang, Bingyuan
    Huang, Jinrui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (09) : 1353 - 1363
  • [34] A family of global classical solutions to 3D incompressible nematic liquid crystal flows
    Shao, Shuguang
    Ge, Yuli
    Zhang, Yuwei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 : 343 - 350
  • [35] On the Blow-Up Criterion for Incompressible Stokes–MHD Equations
    Ahmad Mohammad Alghamdi
    Sadek Gala
    Maria Alessandra Ragusa
    Results in Mathematics, 2018, 73
  • [36] A blow-up criterion for the inhomogeneous incompressible Euler equations
    Bae, Hantaek
    Lee, Woojae
    Shin, Jaeyong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [37] Existence and blow up criterion for strong solutions to the compressible biaxial nematic liquid crystal flow
    Fang, Jiahui
    Lin, Junyu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 6972 - 7012
  • [38] Blow-up of the Smooth Solution to the Compressible Nematic Liquid Crystal System
    Wang, Guangwu
    Guo, Boling
    ACTA APPLICANDAE MATHEMATICAE, 2018, 156 (01) : 211 - 224
  • [39] Blow-up of the Smooth Solution to the Compressible Nematic Liquid Crystal System
    Guangwu Wang
    Boling Guo
    Acta Applicandae Mathematicae, 2018, 156 : 211 - 224
  • [40] A new path to the non blow-up of incompressible flows
    Agelas, Leo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (06): : 1503 - 1537