ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM

被引:0
|
作者
程艺
机构
[1] Department of Mathematics
[2] University of Science and
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正> Ablowitz and Ladik have derived two kinds of discrete forms of A. K. N. S.-Zakharov-Shabat eigenvalue problems—one includes two potentials, while the other includes four potentials. This paper discusses the relations between these two kinds of discrete Ablowitz-Ladik eigenvalue problems in full.
引用
收藏
页码:582 / 594
页数:13
相关论文
共 50 条
  • [11] Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrodinger equation
    Schober, CM
    PHYSICS LETTERS A, 1999, 259 (02) : 140 - 151
  • [12] The Ablowitz-Ladik system on a graph
    Xia, Baoqiang
    NONLINEARITY, 2019, 32 (12) : 4729 - 4761
  • [13] Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model
    Fang, Jia-Jie
    Mou, Da-Sheng
    Zhang, Hui-Cong
    Wang, Yue-Yue
    OPTIK, 2021, 228
  • [14] The Ablowitz-Ladik Hierarchy Revisited
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 139 - +
  • [15] Symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrodinger equation
    Tang, Yifa
    Cao, Jianwen
    Liu, Xiangtao
    Sun, Yuanchang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (10) : 2425 - 2437
  • [16] Solitons in coupled Ablowitz-Ladik chains
    Malomed, BA
    Yang, JK
    PHYSICS LETTERS A, 2002, 302 (04) : 163 - 170
  • [17] Nonlocal Reductions of the Ablowitz-Ladik Equation
    Grahovski, G. G.
    Mohammed, A. J.
    Susanto, H.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (01) : 1412 - 1429
  • [18] Symplectic methods for the Ablowitz-Ladik model
    Tang, YF
    PerezGarcia, VM
    Vazquez, L
    APPLIED MATHEMATICS AND COMPUTATION, 1997, 82 (01) : 17 - 38
  • [19] New symmetries for the Ablowitz-Ladik hierarchies
    Zhang, Da-Jun
    Ning, Tong-Ke
    Bi, Jin-Bo
    Chen, Deng-Yuan
    PHYSICS LETTERS A, 2006, 359 (05) : 458 - 466
  • [20] Dynamics of the Ablowitz-Ladik soliton train
    Doktorov, EV
    Matsuka, NP
    Rothos, VM
    PHYSICAL REVIEW E, 2004, 69 (05): : 7