Local generalized empirical estimation of regression

被引:0
|
作者
Doksum Kjell
机构
[1] Department of Statistics
[2] University of California at Berkeley
[3] CA
关键词
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
摘要
<正> Let f(x) be the density of a design variable X and m(x) = E[Y\X = x] the regression function. Then m(x) - G(x)/f(x), where G(x) = m(x)f(x). The Dirac δ-function is used to define a generalized empirical function Gn (x) for G(x) whose expectation equals G(x). This generalized empirical function exists only in the space of Schwartz distributions, so we introduce a local polynomial of order p approximation to Gn(.) which provides estimators of the function G(x) and its derivatives. The density f(x) can be estimated in a similar manner. The resulting local generalized empirical estimator (LGE) of m(x) is exactly the Nadaraya-Watson estimator at interior points when p = 1, but on the boundary the estimator automatically corrects the boundary effect. Asymptotic normality of the estimator is established. Asymptotic expressions for the mean squared errors are obtained and used in bandwidth selection. Boundary behavior of the estimators is investigated in details. We use Monte Carlo simulations to show that the
引用
收藏
页码:114 / 127
页数:14
相关论文
共 50 条
  • [41] Regularized Bayesian Estimation of Generalized Threshold Regression Models
    Greb, Friederike
    Krivobokova, Tatyana
    Munk, Axel
    von Cramon-Taubadel, Stephan
    BAYESIAN ANALYSIS, 2014, 9 (01): : 171 - 196
  • [42] Generalized method of moment estimation of truncated or censored regression
    Lee, BJ
    Lee, MJ
    APPLIED ECONOMICS LETTERS, 1997, 4 (06): : 365 - 368
  • [43] Value at risk estimation based on generalized quantile regression
    Wang, Yongqiao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 674 - 678
  • [44] An evolutionary estimation procedure for generalized semilinear regression trees
    Vannucci, Giulia
    Gottard, Anna
    COMPUTATIONAL STATISTICS, 2023, 38 (04) : 1927 - 1946
  • [45] Truncated estimation in functional generalized linear regression models
    Liu, Xi
    Divani, Afshin A.
    Petersen, Alexander
    Computational Statistics and Data Analysis, 2022, 169
  • [46] PRINCIPAL COMPONENT ESTIMATION FOR GENERALIZED LINEAR-REGRESSION
    MARX, BD
    SMITH, EP
    BIOMETRIKA, 1990, 77 (01) : 23 - 31
  • [47] Efficient estimation of generalized additive nonparametric regression models
    Linton, OB
    ECONOMETRIC THEORY, 2000, 16 (04) : 502 - 523
  • [48] Truncated estimation in functional generalized linear regression models
    Liu, Xi
    Divani, Afshin A.
    Petersen, Alexander
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 169
  • [49] An evolutionary estimation procedure for generalized semilinear regression trees
    Giulia Vannucci
    Anna Gottard
    Computational Statistics, 2023, 38 : 1927 - 1946
  • [50] Consistent estimation in generalized broken-line regression
    Gill, R
    Baron, M
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 126 (02) : 441 - 460