B-Theory of Runge-Kutta methods for stiff Volterra functional differential equations

被引:0
|
作者
李寿佛
机构
[1] Department of Mathematics
[2] Xiangtan University
[3] Xiangtan
关键词
D O I
暂无
中图分类号
O175.2 [偏微分方程];
学科分类号
摘要
<正> B-stability and B-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra func-tional differential equations(VFDEs)are established which provide unified theoretical foundation for the studyof Runge-Kutta methods when applied to nonlinear stiff initial value problems(IVPs)in ordinary differentialequations(ODEs),delay differential equations(DDEs),integro-differential equatioons(IDEs)and VFDEs of
引用
收藏
页码:662 / 674
页数:13
相关论文
共 50 条
  • [21] The efficiency of Singly-implicit Runge-Kutta methods for stiff differential equations
    D. J. L. Chen
    Numerical Algorithms, 2014, 65 : 533 - 554
  • [22] Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations
    Aboanber, AE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (08): : 1859 - 1876
  • [23] D-convergence of Runge-Kutta methods for stiff delay differential equations
    Huang, CM
    Fu, HY
    Li, SF
    Chen, GN
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (03) : 259 - 268
  • [24] D-CONVERGENCE OF RUNGE-KUTTA METHODS FOR STIFF DELAY DIFFERENTIAL EQUATIONS
    Cheng-ming Huang (Institute of Applied Mathematics
    JournalofComputationalMathematics, 2001, (03) : 259 - 268
  • [25] Study on Banded Implicit Runge-Kutta Methods for Solving Stiff Differential Equations
    Liu, M. Y.
    Zhang, L.
    Zhang, C. F.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [26] RUNGE-KUTTA METHODS FOR DIFFERENTIAL ALGEBRAIC EQUATIONS - THEORY AND IMPLEMENTATION
    ROCHE, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T39 - T41
  • [27] Stability analysis of Runge-Kutta methods for Volterra integro-differential equations
    Wen, Jiao
    Huang, Chengming
    Li, Min
    APPLIED NUMERICAL MATHEMATICS, 2019, 146 : 73 - 88
  • [28] Runge-Kutta methods for fuzzy differential equations
    Palligkinis, S. Ch.
    Papageorgiou, G.
    Famelis, I. Th.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 97 - 105
  • [29] Runge-Kutta methods for Fuzzy Differential Equations
    Palligkinis, S. Ch.
    Papageorgiou, G.
    Famelis, I. Th.
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 444 - 448
  • [30] Runge-Kutta Methods for Ordinary Differential Equations
    Butcher, J. C.
    NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 37 - 58