Mathematical modeling of allelopathic stimulatory phytoplankton species using fractal-fractional derivatives

被引:1
|
作者
Kumawat, Sangeeta [1 ]
Bhatter, Sanjay [1 ]
Bhatia, Bhamini [1 ]
Purohit, Sunil Dutt [2 ]
Suthar, D. L. [3 ]
机构
[1] Malaviya Natl Inst Technol Jaipur, Dept Math, Jaipur, India
[2] Rajasthan Tech Univ, Dept HEAS Math, Kota, India
[3] Wollo Univ, Dept Math, POB 1145, Dessie, Ethiopia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Phytoplankton interaction; Fractal-fractional operator; Atangana-Baleanu derivative; Stability analysis; Numerical simulations; BLOOMS;
D O I
10.1038/s41598-024-70596-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the current study, we employ the novel fractal-fractional operator in the Atangana-Baleanu sense to investigate the dynamics of an interacting phytoplankton species model. Initially, we utilize the Picard-Lindel & ouml;f theorem to validate the uniqueness and existence of solutions for the model. We then explore equilibrium points within the phytoplankton model and conduct Hyers-Ulam stability analysis. Additionally, we present a numerical scheme utilizing the Newton polynomial to validate our analytical findings. Numerical simulations illustrate the dynamical behavior of the model across various fractal and fractional parameter values, visualized through graphical representations. Our simulations reveal that the stability of equilibrium points is not significantly impacted with the long-term memory effect, which is characterized by fractal-fractional order values. However, an increase in fractal-fractional parameters accelerates the convergence of solutions to their intended equilibrium states.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Modeling the dynamics of malaria with infected immigrants using fractal-fractional techniques with deep neural networks
    Samreen, Arifa
    Baleanu, Dumitru
    Messaoudi, Souhaila
    Boulaaras, Salah
    Akram, Sonia
    Rahman, Mati Ur
    ASIAN JOURNAL OF CONTROL, 2025,
  • [42] Role of fractal-fractional operators in modeling of rubella epidemic with optimized orders
    Al Qurashi, Maysaa Mohamed
    OPEN PHYSICS, 2020, 18 (01): : 1111 - 1120
  • [43] Modeling and analysis of the dynamics of HIV/AIDS with non-singular fractional and fractal-fractional operators
    Li, Yong-Min
    Ullah, Saif
    Khan, Muhammad Altaf
    Alshahrani, Mohammad Y.
    Muhammad, Taseer
    PHYSICA SCRIPTA, 2021, 96 (11)
  • [44] Approximate numerical algorithms and artificial neural networks for analyzing a fractal-fractional mathematical model
    Najafi, Hashem
    Bensayah, Abdallah
    Tellab, Brahim
    Etemad, Sina
    Ntouyas, Sotiris K.
    Rezapour, Shahram
    Tariboon, Jessada
    AIMS MATHEMATICS, 2023, 8 (12): : 28280 - 28307
  • [45] Mathematical study of fractal-fractional leptospirosis disease in human and rodent populations dynamical transmission
    Farman, populations dynamical Muhammad
    Jamil, Saba
    Nisar, Kottakkaran Sooppy
    Akgul, Ali
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (03)
  • [46] Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative
    El-Dessoky, M. M.
    Khan, Muhammad Altaf
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 729 - 746
  • [47] Analysis of fractal-fractional Alzheimer's disease mathematical model in sense of Caputo derivative
    Yadav, Pooja
    Jahan, Shah
    Nisar, Kottakkaran Sooppy
    AIMS PUBLIC HEALTH, 2024, 11 (02): : 399 - 419
  • [48] A comprehensive mathematical analysis of fractal-fractional order nonlinear re-infection model
    Eiman
    Shah, Kamal
    Sarwar, Muhammad
    Abdeljawad, Thabet
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 103 : 353 - 365
  • [49] Modeling the dynamics of coronavirus with super-spreader class: A fractal-fractional approach
    Li, Xiao-Ping
    Ullah, Saif
    Zahir, Hina
    Alshehri, Ahmed
    Riaz, Muhammad Bilal
    Al Alwan, Basem
    RESULTS IN PHYSICS, 2022, 34
  • [50] Numerical investigation of pine wilt disease using fractal-fractional operator
    Kumar, Anil
    Shaw, Pawan Kumar
    Kumar, Sunil
    INDIAN JOURNAL OF PHYSICS, 2025, 99 (02) : 367 - 393