共 50 条
The Potential Mechanism of Liujunzi Decoction in the Treatment of Breast Cancer based on Network Pharmacology and Molecular Docking Technology
被引:1
|作者:
Sun, Mei
[1
]
Lv, Feng
[1
]
Qin, Chunmeng
[1
,2
]
Du, Dan
[1
]
Li, Wenjun
[1
]
Liu, Songqing
[1
]
机构:
[1] Chongqing Med Univ, Affiliated Hosp 3, Dept Pharm, Chongqing 401120, Peoples R China
[2] Chongqing Med Univ, Coll Pharm, Chongqing 400016, Peoples R China
关键词:
Liujunzi decoction;
network pharmacology;
molecular docking;
breast cancer;
FOS;
ESR1;
TRADITIONAL CHINESE MEDICINE;
PATHWAY;
GENES;
CELLS;
APOPTOSIS;
THERAPY;
STAGE;
D O I:
10.2174/0113816128289900240219104854
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Background Liujunzi Decoction (LJZD) is a potential clinical treatment for Breast Cancer (BC), but the active ingredients and mechanisms underlying its effectiveness remain unclear.Objective The study aimed to investigate the target gene of LJZD compatibility and the possible mechanism of action in the treatment of breast cancer by using network pharmacology and molecular docking.Methods Based on TCMSP, ETCM, and BATMAN database searching and screening to obtain the ingredients of LJZD, the related targets were obtained. Breast cancer-related targets were collected through GEO, Geencards, OMIM, and other databases, and drug-disease Venn diagrams were drawn by R. The PPI network map was constructed by using Cytoscape. The intersecting targets were imported into the STRING database, and the core targets were analyzed and screened. The intersected targets were analyzed by the DAVID database for GO and KEGG enrichment. AutoDock Vina and Gromacs were used for molecular docking and simulation of the core targets and active ingredients.Results 126 active ingredients of LJZD were obtained; 241 targets related to breast cancer were sought after screening, and 180 intersection targets were identified through Venn diagram analysis. The core targets were FOS and ESR1. KEGG enrichment analysis mainly involved PI3K/Akt, MAPK, and other signaling pathways.Conclusion This study has explored the possible targets and signaling pathways of LJZD in treating breast cancer through network pharmacology and bioinformatics analysis. Molecular docking and simulation have further validated the potential mechanism of action of LJZD in breast cancer treatment, providing essential experimental data for future studies.
引用
收藏
页码:702 / 726
页数:25
相关论文