Allosteric nanobodies to study the interactions between SOS1 and RAS

被引:1
|
作者
Fischer, Baptiste [1 ,2 ]
Uchanski, Tomasz [3 ,4 ]
Sheryazdanova, Aidana [5 ,6 ]
Gonzalez, Simon [7 ]
Volkov, Alexander N. [3 ,8 ]
Brosens, Elke [3 ,4 ]
Zogg, Thomas [3 ,4 ]
Kalichuk, Valentina [3 ,4 ]
Ballet, Steven [7 ]
Versees, Wim [3 ,4 ]
Sablina, Anna A. [5 ,6 ]
Pardon, Els [3 ,4 ]
Wohlkoenig, Alexandre [3 ,4 ]
Steyaert, Jan [3 ,4 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, CBMN,UMR 5248, Pessac, France
[2] European Inst Chem & Biol IECB, 2 Rue Robert Escarpit, Pessac, France
[3] VIB, VIB VUB Ctr Struct Biol, Pleinlaan 2, Brussels, Belgium
[4] Vrije Univ Brussel, Struct Biol Brussels, Pleinlaan 2, Brussels, Belgium
[5] VIB, VIB KU Leuven Ctr Canc Biol, Herestr 49, Leuven, Belgium
[6] Katholieke Univ Leuven, Dept Oncol, Herestr 49, Leuven, Belgium
[7] Vrije Univ Brussel, Res Grp Organ Chem, Pleinlaan 2, Brussels, Belgium
[8] VUB, Jean Jeener NMR Ctr, Brussels, Belgium
基金
比利时弗兰德研究基金会;
关键词
PROTEIN-PROTEIN INTERACTIONS; ACTIVATION; REVEAL; RANGE;
D O I
10.1038/s41467-024-50349-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-protein interactions (PPIs) are central in cell metabolism but research tools for the structural and functional characterization of these PPIs are often missing. Here we introduce broadly applicable immunization (Cross-link PPIs and immunize llamas, ChILL) and selection strategies (Display and co-selection, DisCO) for the discovery of diverse nanobodies that either stabilize or disrupt PPIs in a single experiment. We apply ChILL and DisCO to identify competitive, connective, or fully allosteric nanobodies that inhibit or facilitate the formation of the SOS1 center dot RAS complex and modulate the nucleotide exchange rate on this pivotal GTPase in vitro as well as RAS signalling in cellulo. One of these connective nanobodies fills a cavity that was previously identified as the binding pocket for a series of therapeutic lead compounds. The long complementarity-determining region (CDR3) that penetrates this binding pocket serves as pharmacophore for extending the repertoire of potential leads. Protein-protein interactions are central in cell metabolism but research tools for their characterization are missing. Here, the authors introduce strategies for the discovery of nanobodies that modulate the SOS1 center dot RAS complex formation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Discovery of a potent, selective, and orally bioavailable SOS1 inhibitor, RMC-023, an in vivo tool compound that blocks RAS activation via disruption of the RAS-SOS1 interaction.
    Buckl, Andreas
    Quintana, Elsa
    Lee, Grace J.
    Shifrin, Nataliya
    Zhong, Mengqi
    Garrenton, Lindsay S.
    Montgomery, David C.
    Stahlhut, Carlos
    Zhao, Frances
    Whalen, Dan M.
    Thompson, Severin K.
    Tamboong, Arlyn
    Gliedt, Micah
    Knox, John E.
    Cregg, James J.
    Aay, Naing
    Choi, Jong
    Nguyen, Bao
    Tripathi, Atti
    Zhao, Ruiping
    Saldajeno-Concar, Mae
    Marquez, Abby
    Hsieh, Daphne
    McDowell, Laura L.
    Koltun, Elena S.
    Bermingham, Alun
    Wildes, David
    Singh, Mallika
    Wang, Zhengping
    Hansen, Richard
    Smith, Jan A.
    Gill, Adrian L.
    CANCER RESEARCH, 2021, 81 (13)
  • [42] A high-grade glioma with SOS1 hamplification
    Vidal, Barbara
    Bryke, Christine
    Hsu, Nancy
    Alterman, Ronnie
    Yeo, Alan T.
    Charest, Al
    Varma, Hemant
    CLINICAL NEUROPATHOLOGY, 2020, 39 (03) : 126 - 134
  • [43] RASOPATHIES AND BRAIN TUMOROGENESIS: ARE SOS1 MUTATIONS ARE CONCERNED?
    Abdelmoula, Nouha Bouayed
    Louati, Rim
    Abdelmoula, Balkiss
    Aloulou, Samir
    NEURO-ONCOLOGY, 2020, 22 : 471 - 471
  • [44] Loss of Sos1 Inhibits Oncogenic Kras-Induced Hyperactivation of Wild-Type Ras during Leukemogenesis
    You, Xiaona
    Kong, Guangyao
    Ranheim, Erik A.
    Zhou, Yun
    Zhang, Jing
    BLOOD, 2016, 128 (22)
  • [45] Structural and functional insight into the regulation of SOS1 activity
    Zhang, Yanming
    Yang, Guanghui
    NATURE PLANTS, 2023, 9 (11) : 1791 - 1792
  • [46] Noonan Syndrome, the SOS1 Gene and Embryonal Rhabdomyosarcoma
    Jongmans, Marjolijn C. J.
    Hoogerbrugge, Peter M.
    Hilkens, Linda
    Flucke, Uta
    van der Burgt, Ineke
    Noordam, Kees
    Ruiterkamp-Versteeg, Martina
    Yntema, Helger G.
    Nillesen, Willy M.
    Ligtenberg, Marjolijn J. L.
    van Kessel, Ad Geurts
    Kuiper, Roland P.
    Hoogerbrugge, Nicoline
    GENES CHROMOSOMES & CANCER, 2010, 49 (07): : 635 - 641
  • [47] Consequences of SOS1 deficiency Intracellular physiology and transcription
    Ha, Oh Dong
    Zahir, Ali
    Cheol, Park Hyeong
    Ray, Bressan A.
    Jin, Yun Dae
    Hans, Bohnert J.
    PLANT SIGNALING & BEHAVIOR, 2010, 5 (06) : 766 - 768
  • [48] 结直肠癌SOS1、K-ras共表达对预后的影响
    曹建
    万相斌
    杜记涛
    赵卫杰
    陈广龙
    赵智力
    董志闯
    孙淼淼
    李智
    广东医学, 2019, 40 (01) : 95 - 100
  • [49] Functional Redundancy of Sos1 and Sos2 for Lymphopoiesis and Organismal Homeostasis and Survival
    Baltanas, Fernando C.
    Perez-Andres, Martin
    Ginel-Picardo, Alicia
    Diaz, David
    Jimeno, David
    Liceras-Boillos, Pilar
    Kortum, Robert L.
    Samelson, Lawrence E.
    Orfao, Alberto
    Santos, Eugenio
    MOLECULAR AND CELLULAR BIOLOGY, 2013, 33 (22) : 4562 - 4578
  • [50] THE CATALYTIC DOMAIN OF THE MOUSE SOS1 GENE-PRODUCT ACTIVATES RAS PROTEINS IN-VIVO AND IN-VITRO
    LIU, BX
    WEI, W
    BROEK, D
    ONCOGENE, 1993, 8 (11) : 3081 - 3084