Direct and some inverse problems for a generalized diffusion equation with variable coefficients

被引:3
|
作者
Ilyas, Asim [1 ,2 ]
Malik, Salman A. [2 ]
机构
[1] Univ Insubria, Dept Sci & High Technol, Como, Italy
[2] COMSATS Univ Islamabad, Dept Math, Pk Rd, Chak Shahzad Islamabad, Pakistan
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 06期
关键词
Inverse problems; Generalized fractional operator; Ill-posedness; Mittag-Leffler functions;
D O I
10.1007/s40314-024-02869-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Direct and two inverse problems for a Legendre equation involving integral convolution in time are studied. The inverse problems are ill-posed in the sense of Hadamard. The analytical series solutions of the problems are constructed by using method of variable separation. The determination of only u(x, y) is studied in the direct problem, the recovery of a pair of functions, i.e., {u(x,y),f(x)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{u(x,y), f(x)\}$$\end{document} with appropriate addition data at some T is investigated in the 1st inverse problem while the identification of a pair of functions, i.e., {u(x,y),q(y)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{u(x,y), q(y)\}$$\end{document} with an integral type data is considered in the 2nd inverse problem. By imposing certain regularity conditions, the unique existence of series solutions is developed. We provided some numerical examples to illustrate our results for the inverse problems.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Generalized heat diffusion equations with variable coefficients and their fractalization from the Black-Scholes equation
    Rami Ahmad El-Nabulsi
    Alireza Khalili Golmankhaneh
    Communications in Theoretical Physics, 2021, 73 (05) : 12 - 19
  • [22] Uniqueness and Holder stability of discontinuous diffusion coefficients in three related inverse problems for the heat equation
    Poisson, Olivier
    INVERSE PROBLEMS, 2008, 24 (02)
  • [23] Invariant solutions of variable coefficients generalized Gardner equation
    Rajeev Kumar
    R. K. Gupta
    S. S. Bhatia
    Nonlinear Dynamics, 2016, 83 : 2103 - 2111
  • [24] Invariant solutions of variable coefficients generalized Gardner equation
    Kumar, Rajeev
    Gupta, R. K.
    Bhatia, S. S.
    NONLINEAR DYNAMICS, 2016, 83 (04) : 2103 - 2111
  • [25] Analysis of the Generalized KdV Equation with Variable Coefficients Painleve
    Ying, Li
    Xu, Li
    2013 INTERNATIONAL CONFERENCE ON ECONOMIC, BUSINESS MANAGEMENT AND EDUCATION INNOVATION (EBMEI 2013), VOL 18, 2013, 18 : 137 - 140
  • [26] Exact Solutions for the Generalized BBM Equation with Variable Coefficients
    Gomez, Cesar A.
    Salas, Alvaro H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [27] Exact Solutions for Generalized KdV Equation with Variable Coefficients
    Wang Jinzhi
    Chen Wanji
    Xiao Shengzhong
    Mei Jianqin
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (06): : 713 - 722
  • [28] On the generalized Kadomtsev-Petviashvili equation with generalized evolution and variable coefficients
    Esfahani, Amin
    PHYSICS LETTERS A, 2010, 374 (35) : 3635 - 3645
  • [29] Direct and inverse spectral problems for generalized strings
    Heinz Langer
    Henrik Winkler
    Integral Equations and Operator Theory, 1998, 30 : 409 - 431
  • [30] Inverse nodal problems for singular diffusion equation
    Amirov, Rauf
    Durak, Sevim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 9067 - 9083