Joint stereo 3D object detection and implicit surface reconstruction

被引:1
|
作者
Li, Shichao [1 ]
Huang, Xijie [1 ]
Liu, Zechun [2 ]
Cheng, Kwang-Ting [1 ]
机构
[1] HKUST, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China
[2] Meta Real Labs, Pittsburgh, PA 15222 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
D O I
10.1038/s41598-024-64677-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a new learning-based framework S-3D-RCNN that can recover accurate object orientation in SO(3) and simultaneously predict implicit rigid shapes from stereo RGB images. For orientation estimation, in contrast to previous studies that map local appearance to observation angles, we propose a progressive approach by extracting meaningful Intermediate Geometrical Representations (IGRs). This approach features a deep model that transforms perceived intensities from one or two views to object part coordinates to achieve direct egocentric object orientation estimation in the camera coordinate system. To further achieve finer description inside 3D bounding boxes, we investigate the implicit shape estimation problem from stereo images. We model visible object surfaces by designing a point-based representation, augmenting IGRs to explicitly address the unseen surface hallucination problem. Extensive experiments validate the effectiveness of the proposed IGRs, and S-3D-RCNN achieves superior 3D scene understanding performance. We also designed new metrics on the KITTI benchmark for our evaluation of implicit shape estimation.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] SGM3D: Stereo Guided Monocular 3D Object Detection
    Zhou, Zheyuan
    Du, Liang
    Ye, Xiaoqing
    Zou, Zhikang
    Tan, Xiao
    Zhang, Li
    Xue, Xiangyang
    Feng, Jianfeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 10478 - 10485
  • [22] Detection and Reconstruction of an Implicit Boundary Surface by Adaptively Expanding A Small Surface Patch in a 3D Image
    Wang, Lisheng
    Wang, Pai
    Cheng, Liuhang
    Ma, Yu
    Wu, Shenzhi
    Wang, Yu-Ping
    Xu, Zongben
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (11) : 1490 - 1506
  • [23] Joint Spatial-Temporal Optimization for Stereo 3D Object Tracking
    Li, Peiliang
    Shi, Jieqi
    Shen, Shaojie
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6876 - 6885
  • [24] Object recognition and 3D reconstruction of occluded objects using binocular stereo
    Priya, L.
    Anand, Sheila
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2018, 21 (01): : 29 - 38
  • [25] Object recognition and 3D reconstruction of occluded objects using binocular stereo
    L. Priya
    Sheila Anand
    Cluster Computing, 2018, 21 : 29 - 38
  • [26] 3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhu, Yukun
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (05) : 1259 - 1272
  • [27] FCNet: Stereo 3D Object Detection with Feature Correlation Networks
    Wu, Yingyu
    Liu, Ziyan
    Chen, Yunlei
    Zheng, Xuhui
    Zhang, Qian
    Yang, Mo
    Tang, Guangming
    ENTROPY, 2022, 24 (08)
  • [28] PLUMENet: Efficient 3D Object Detection from Stereo Images
    Wang, Yan
    Yang, Bin
    Hu, Rui
    Liang, Ming
    Urtasun, Raquel
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3383 - 3390
  • [29] An object boundary detection system based on a 3D stereo monitor
    Zhang, Shuqun
    Furia, Bryan
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVII, 2014, 9217
  • [30] Stereo 3D Object Detection Using a Feature Attention Module
    Zhao, Kexin
    Jiang, Rui
    He, Jun
    ALGORITHMS, 2023, 16 (12)