How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses

被引:8
|
作者
Costa, Joana C. [1 ]
Roxo, Tiago [2 ]
Proenca, Hugo
Inacio, Pedro Ricardo Morais
机构
[1] Univ Beira Interior, Sins Lab, Inst Telecomunicacoes, P-6201001 Covilha, Portugal
[2] Univ Beira Interior, Dept Comp Sci, P-6201001 Covilha, Portugal
关键词
Surveys; Transformers; Perturbation methods; Object recognition; Deep learning; Closed box; Vectors; Adversarial attacks; adversarial defenses; datasets; evaluation metrics; review; vision transformers; RECOGNITION; VISION;
D O I
10.1109/ACCESS.2024.3395118
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep Learning is currently used to perform multiple tasks, such as object recognition, face recognition, and natural language processing. However, Deep Neural Networks (DNNs) are vulnerable to perturbations that alter the network prediction, named adversarial examples, which raise concerns regarding the usage of DNNs in critical areas, such as Self-driving Vehicles, Malware Detection, and Healthcare. This paper compiles the most recent adversarial attacks in Object Recognition, grouped by the attacker capacity and knowledge, and modern defenses clustered by protection strategies, providing background details to understand the topic of adversarial attacks and defenses. The new advances regarding Vision Transformers are also presented, which have not been previously done in the literature, showing the resemblance and dissimilarity between this architecture and Convolutional Neural Networks. Furthermore, the most used datasets and metrics in adversarial settings are summarized, along with datasets requiring further evaluation, which is another contribution. This survey compares the state-of-the-art results under different attacks for multiple architectures and compiles all the adversarial attacks and defenses with available code, comprising significant contributions to the literature. Finally, practical applications are discussed, and open issues are identified, being a reference for future works.
引用
收藏
页码:61113 / 61136
页数:24
相关论文
共 50 条
  • [41] A Survey of Federated Learning: Review, Attacks, Defenses
    Yao, Zhongyi
    Cheng, Jieren
    Fu, Cebin
    Huang, Zhennan
    BIG DATA AND SECURITY, ICBDS 2023, PT I, 2024, 2099 : 166 - 177
  • [42] Survey on Privacy Attacks and Defenses in Machine Learning
    Liu R.-X.
    Chen H.
    Guo R.-Y.
    Zhao D.
    Liang W.-J.
    Li C.-P.
    Chen, Hong (chong@ruc.edu.cn), 1600, Chinese Academy of Sciences (31): : 866 - 892
  • [43] A Detailed Survey on Federated Learning Attacks and Defenses
    Sikandar, Hira Shahzadi
    Waheed, Huda
    Tahir, Sibgha
    Malik, Saif U. R.
    Rafique, Waqas
    ELECTRONICS, 2023, 12 (02)
  • [44] Adversarial attacks and defenses on text-to-image diffusion models: A survey
    Zhang, Chenyu
    Hu, Mingwang
    Li, Wenhui
    Wang, Lanjun
    INFORMATION FUSION, 2025, 114
  • [45] A survey on adversarial attacks and defenses for object detection and their applications in autonomous vehicles
    Amirkhani, Abdollah
    Karimi, Mohammad Parsa
    Banitalebi-Dehkordi, Amin
    VISUAL COMPUTER, 2023, 39 (11): : 5293 - 5307
  • [46] A survey on adversarial attacks and defenses for object detection and their applications in autonomous vehicles
    Abdollah Amirkhani
    Mohammad Parsa Karimi
    Amin Banitalebi-Dehkordi
    The Visual Computer, 2023, 39 : 5293 - 5307
  • [47] Deep learning adversarial attacks and defenses in autonomous vehicles: a systematic literature review from a safety perspective
    Ibrahum, Ahmed Dawod Mohammed
    Hussain, Manzoor
    Hong, Jang-Eui
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [48] Adversarial Attacks on Deep-learning Models in Natural Language Processing: A Survey
    Zhang, Wei Emma
    Sheng, Quan Z.
    Alhazmi, Ahoud
    Li, Chenliang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (03)
  • [49] A Survey of Adversarial Attacks: An Open Issue for Deep Learning Sentiment Analysis Models
    Vazquez-Hernandez, Monserrat
    Morales-Rosales, Luis Alberto
    Algredo-Badillo, Ignacio
    Fernandez-Gregorio, Sofia Isabel
    Rodriguez-Rangel, Hector
    Cordoba-Tlaxcalteco, Maria-Luisa
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [50] A Survey on Adversarial Text Attacks on Deep Learning Models in Natural Language Processing
    Deepan, S.
    Torres-Cruz, Fred
    Placido-Lerma, Ruben L.
    Udhayakumar, R.
    Anuradha, S.
    Kapila, Dhiraj
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 1059 - 1067