Deep neural network expressivity for optimal stopping problems

被引:1
|
作者
Gonon, Lukas [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW71NE, England
关键词
Deep neural network; Optimal stopping problem; Markov process; Expression rate; Approximation error bound; Curse of dimensionality; C45; C63; C41; AMERICAN OPTIONS; CONVERGENCE; SIMULATION; BOUNDS; APPROXIMATION; ALGORITHMS;
D O I
10.1007/s00780-024-00538-0
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article studies deep neural network expression rates for optimal stopping problems of discrete-time Markov processes on high-dimensional state spaces. A general framework is established in which the value function and continuation value of an optimal stopping problem can be approximated with error at most epsilon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon $\end{document} by a deep ReLU neural network of size at most kappa d q epsilon - r \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa d<^>{\mathfrak{q}} \varepsilon <^>{-\mathfrak{r}}$\end{document} . The constants kappa , q , r >= 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa ,\mathfrak{q},\mathfrak{r} \geq 0$\end{document} do not depend on the dimension d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d$\end{document} of the state space or the approximation accuracy epsilon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon $\end{document} . This proves that deep neural networks do not suffer from the curse of dimensionality when employed to approximate solutions of optimal stopping problems. The framework covers for example exponential L & eacute;vy models, discrete diffusion processes and their running minima and maxima. These results mathematically justify the use of deep neural networks for numerically solving optimal stopping problems and pricing American options in high dimensions.
引用
收藏
页码:865 / 910
页数:46
相关论文
共 50 条
  • [31] ON THE OPTIMAL STOPPING PROBLEMS WITH MONOTONE THRESHOLDS
    Tamaki, Mitsushi
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (04) : 926 - 940
  • [32] A REMARK ON OPTIMAL VARIANCE STOPPING PROBLEMS
    Buonaguidi, Bruno
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (04) : 1187 - 1194
  • [33] Approximate solutions to optimal stopping problems
    Tsitsiklis, JN
    VanRoy, B
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 1082 - 1088
  • [34] A new deep neural network algorithm for multiple stopping with applications in options pricing
    Han, Yuecai
    Li, Nan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [35] Optimal nonparametric inference via deep neural network
    Liu, Ruiqi
    Boukai, Ben
    Shang, Zuofeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [36] An Optimal Framework for SDN Based on Deep Neural Network
    Abdallah, Abdallah
    Ishak, Mohamad Khairi
    Sani, Nor Samsiah
    Khan, Imran
    Albogamy, Fahad R.
    Amano, Hirofumi
    Mostafa, Samih M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 1125 - 1140
  • [37] DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow Problems
    Pan, Xiang
    Chen, Minghua
    Zhao, Tianyu
    Low, Steven H.
    IEEE SYSTEMS JOURNAL, 2023, 17 (01): : 673 - 683
  • [38] Optimal Trained Deep Neural Network for Localization in Wireless Sensor Network
    Kagi, Shivakumar
    Mathapati, Basavaraj S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (08)
  • [39] Deep Convolutional Neural Network for Inverse Problems in Imaging
    Jin, Kyong Hwan
    McCann, Michael T.
    Froustey, Emmanuel
    Unser, Michael
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4509 - 4522
  • [40] Deep problems with neural network models of human vision
    Bowers, Jeffrey S.
    Malhotra, Gaurav
    Dujmovic, Marin
    Llera Montero, Milton
    Tsvetkov, Christian
    Biscione, Valerio
    Puebla, Guillermo
    Adolfi, Federico
    Hummel, John E.
    Heaton, Rachel F.
    Evans, Benjamin D.
    Mitchell, Jeffrey
    Blything, Ryan
    BEHAVIORAL AND BRAIN SCIENCES, 2022, 46