Deep neural network expressivity for optimal stopping problems

被引:1
|
作者
Gonon, Lukas [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW71NE, England
关键词
Deep neural network; Optimal stopping problem; Markov process; Expression rate; Approximation error bound; Curse of dimensionality; C45; C63; C41; AMERICAN OPTIONS; CONVERGENCE; SIMULATION; BOUNDS; APPROXIMATION; ALGORITHMS;
D O I
10.1007/s00780-024-00538-0
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article studies deep neural network expression rates for optimal stopping problems of discrete-time Markov processes on high-dimensional state spaces. A general framework is established in which the value function and continuation value of an optimal stopping problem can be approximated with error at most epsilon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon $\end{document} by a deep ReLU neural network of size at most kappa d q epsilon - r \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa d<^>{\mathfrak{q}} \varepsilon <^>{-\mathfrak{r}}$\end{document} . The constants kappa , q , r >= 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa ,\mathfrak{q},\mathfrak{r} \geq 0$\end{document} do not depend on the dimension d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d$\end{document} of the state space or the approximation accuracy epsilon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon $\end{document} . This proves that deep neural networks do not suffer from the curse of dimensionality when employed to approximate solutions of optimal stopping problems. The framework covers for example exponential L & eacute;vy models, discrete diffusion processes and their running minima and maxima. These results mathematically justify the use of deep neural networks for numerically solving optimal stopping problems and pricing American options in high dimensions.
引用
收藏
页码:865 / 910
页数:46
相关论文
共 50 条
  • [1] Deep optimal stopping
    Becker, Sebastian
    Cheridito, Patrick
    Jentzen, Arnulf
    Journal of Machine Learning Research, 2019, 20
  • [2] Deep Optimal Stopping
    Becker, Sebastian
    Cheridito, Patrick
    Jentzen, Arnulf
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [3] OPTIMAL STOPPING PROBLEMS WITH RESTRICTED STOPPING TIMES
    Bao, Wenqing
    Wu, Xianyi
    Zhou, Xian
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2017, 13 (01) : 397 - 409
  • [4] Convergence of the Backward Deep BSDE Method with Applications to Optimal Stopping Problems
    Gao, Chengfan
    Gao, Siping
    Hu, Ruimeng
    Zhu, Zimu
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2023, 14 (04): : 1290 - 1303
  • [5] Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems
    Hu, Ruimeng
    arXiv, 2019,
  • [6] Deep learning for ranking response surfaces with applications to optimal stopping problems
    Hu, Ruimeng
    QUANTITATIVE FINANCE, 2020, 20 (09) : 1567 - 1581
  • [7] Deep Recurrent Optimal Stopping
    Venkata, Niranjan Damera
    Bhattacharyya, Chiranjib
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] ON THE APPROXIMATION OF OPTIMAL STOPPING PROBLEMS
    LAMBERTON, D
    PAGES, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1990, 26 (02): : 331 - 355
  • [9] Approximation of optimal stopping problems
    Kühne, R
    Rüschendorf, L
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) : 301 - 325
  • [10] TRANSITIVITY IN PROBLEMS OF OPTIMAL STOPPING
    IRLE, A
    ANNALS OF PROBABILITY, 1981, 9 (04): : 642 - 647