Graph-based sparse bayesian broad learning system for semi-supervised learning

被引:0
|
作者
Xu, Lili [1 ,2 ]
Philip Chen, C.L. [3 ]
Han, Ruizhi [2 ,4 ]
机构
[1] School of Applied Mathematics, Beijing Normal University, Zhuhai, Zhuhai,519087, China
[2] Faculty of Science and Technology, University of Macau, Macau,999078, China
[3] School of Computer Science and Engineering, South China University of Technology, Guangzhou,510641, China
[4] School of Information Science and Engineering, University of Jinan, Jinan,250022, China
基金
中国国家自然科学基金;
关键词
Fast marginal likelihood maximization - Graph-based - Graph-based models - Manifold regularizations - Marginal likelihood - Performance - Semi-supervised - Sparse bayesian - Sparse bayesian broad learning system - Unlabeled data;
D O I
暂无
中图分类号
学科分类号
摘要
During the past decades, semi-supervised learning in classification has been regarded as one of the most active research area due to the increasing physical demand. Generally, the semi-supervised learning model believes the unlabeled data could potential be helpful to achieve higher performance as long as scare labeled samples under either cluster assumption or manifold assumption. However, most of the semi-supervised classifiers directly incorporate all the unlabeled data without any selective admission, which contains unfavorable features and noise diminishing performance while resulting in inability to large-scale data. In this paper, we propose a graph-based semi-supervised learning algorithm named GSB2LS within Bayesian framework for classification. The algorithm can explore unlabeled data effectively by adopting the compound prior that consists of unlabeled manifold information and sparse Bayesian inference to the broad structure. In particular, GSB2LS takes advantage of the broad structure to search for more potential associations of features, the manifold regularization to capture beneficial interdependence of unlabeled samples, the Bayesian framework to maintain the universal sparsity, the fast marginal likelihood maximization to update the relevance set based on the defined contribution, which leads to the feasibility to process large-scale data in the inductive way. Moreover, the algorithm is capable of outputting the probabilistic estimation of prediction for further decision analysis. Extensive empirical results verifies the excellent performance of our algorithm with clearly superior efficiency and generalization compared to other state-of-the-art semi-supervised classifiers. © 2022
引用
收藏
页码:193 / 210
相关论文
共 50 条
  • [41] A Flexible Generative Framework for Graph-based Semi-supervised Learning
    Ma, Jiaqi
    Tang, Weijing
    Zhu, Ji
    Mei, Qiaozhu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] Time Series Analysis with Graph-based Semi-Supervised Learning
    Xu, Zhao
    Funaya, Koichi
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 1100 - 1105
  • [43] Safety-aware Graph-based Semi-Supervised Learning
    Gan, Haitao
    Li, Zhenhua
    Wu, Wei
    Luo, Zhizeng
    Huang, Rui
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 107 : 243 - 254
  • [44] Graph-based Semi-Supervised & Active Learning for Edge Flows
    Jia, Junteng
    Schaub, Michael T.
    Segarra, Santiago
    Benson, Austin R.
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 761 - 771
  • [45] A Sampling Theory Perspective of Graph-Based Semi-Supervised Learning
    Anis, Aamir
    El Gamal, Aly
    Avestimehr, A. Salman
    Ortega, Antonio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2322 - 2342
  • [46] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [47] Image colourisation using graph-based semi-supervised learning
    Liu, B. -B.
    Lu, Z. -M.
    IET IMAGE PROCESSING, 2009, 3 (03) : 115 - 120
  • [48] Matrix Completion for Graph-Based Deep Semi-Supervised Learning
    Taherkhani, Fariborz
    Kazemi, Hadi
    Nasrabadi, Nasser M.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5058 - 5065
  • [49] Analysis of label noise in graph-based semi-supervised learning
    de Aquino Afonso, Bruno Klaus
    Berton, Lilian
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1127 - 1134
  • [50] A comparison of graph-based semi-supervised learning for data augmentation
    de Oliveira, Willian Dihanster G.
    Penatti, Otavio A. B.
    Berton, Lilian
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 264 - 271