Self-learning production system in smallbatch production

被引:0
|
作者
Stanula P. [1 ]
Metternich J. [1 ]
Glockseisen T. [2 ]
机构
[1] Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen, TU Darmstadt, Darmstadt/Stadtallendorf
[2] WEZAG GmbH Werkzeugfabrik, Stadtallendorf
来源
关键词
Das Projekt (HA-Projekt-Nr.: 511/16 - 23) wird im Rahmen von Hessen ModellProjekte aus Mitteln der LOEWE - Landes- Offensive zur Entwicklung Wissenschaftlich- ökonomischer Exzellenz; Förderlinie 3: KMU-Verbundvorhaben gefördert;
D O I
10.3139/104.112103
中图分类号
学科分类号
摘要
The production of small batches and customer individual products is a great challenge in production planning and control of small and medium sized companies. The rise of digitalization in production enables new solutions to produce small batches more efficiently. Nevertheless, a structured approach in companies is still an exception. Thus, within the project CrimpProd-S a self-learning production system based on process data was methodically implemented to optimize production planning and control. © Carl Hanser Verlag, München.
引用
收藏
页码:332 / 335
页数:3
相关论文
共 50 条
  • [21] Design of a self-learning multi-agent framework for the adaptation of modular production systems
    Daniele Scrimieri
    Shukri M. Afazov
    Svetan M. Ratchev
    The International Journal of Advanced Manufacturing Technology, 2021, 115 : 1745 - 1761
  • [22] Evaluation of Reinforcement Learning Methods for a Self-learning System
    Bechtold, David
    Wendt, Alexander
    Jantsch, Axel
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 36 - 47
  • [23] Self-Learning Production Systems (SLPS) - Optimization of Manufacturing process parameters for the Shoe Industry
    Di Orio, Giovanni
    Candido, Goncalo
    Barata, Jose
    Scholze, Sebastian
    Kotte, Oliver
    Stokic, Dragan
    2013 11TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2013, : 386 - 391
  • [24] Self-Learning Support System to Increase Motivation for Learning
    Ito, Kei
    Sato, Tomoki
    Nlimi, Ayahiko
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 17TH '12), 2012, : 246 - 250
  • [25] Multisensorial self-learning systems for quality monitoring of carbon fiber composites in aircraft production
    Kuhl, M.
    Wiener, T.
    Krauss, M.
    EIGHTH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2013, 12 : 103 - 108
  • [26] Design of a self-learning multi-agent framework for the adaptation of modular production systems
    Scrimieri, Daniele
    Afazov, Shukri M.
    Ratchev, Svetan M.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 115 (5-6): : 1745 - 1761
  • [27] Self-learning
    Ellis, B
    FUTURIST, 2005, 39 (01) : 4 - 4
  • [28] NEW DIMENSIONS IN SELF-LEARNING IN AN SELF-LEARNING ENVIRONMENT OF LEARNING IN REGSEAU
    Fournier, Helene
    Kop, Rita
    CANADIAN JOURNAL FOR THE STUDY OF ADULT EDUCATION, 2014, 26 (01): : 35 - 55
  • [29] Robot vision system with self-learning mechanism
    Kobayashi, Hisato
    Uchida, Kenko
    Matsuzaki, Yutaka
    Journal of artificial neural networks, 1995, 2 (1-2): : 137 - 144
  • [30] An Efficient Self-learning People Counting System
    Li, Jingwen
    Huang, Lei
    Liu, Changping
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 125 - 129