Beta-Bezier Surfaces

被引:0
|
作者
Moustafa S. [1 ]
Kazadi A. [1 ]
Cheng F.F. [1 ]
Lai S. [2 ]
Lin A.J. [3 ]
机构
[1] University of Kentucky, United States
[2] Georgia Gwinnett College, United States
[3] Austin Peay State University, United States
来源
关键词
Beta-Bezier Curves; Beta-Bezier Surfaces; Bezier curves; Bezier surfaces; interpolation; tension control;
D O I
10.14733/cadaps.2024.693-704
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
In this paper, the concept of tension control [1] is developed for Bezier surfaces so that one can reshape a so-called Beta-Bezier surface without moving its control points, a property motivated by NURBS surfaces but can be performed more efficiently and in a friendlier manner with the new surface representation technique. In addition to developing the concept of tension control for Bezier surfaces, an efficient rectangular mesh interpolation scheme for Beta-Bezier surfaces is also developed. © 2024 U-turn Press LLC,.
引用
收藏
页码:693 / 704
页数:11
相关论文
共 50 条
  • [21] A MULTISIDED GENERALIZATION OF BEZIER SURFACES
    LOOP, CT
    DEROSE, TD
    ACM TRANSACTIONS ON GRAPHICS, 1989, 8 (03): : 204 - 234
  • [22] Bezier surfaces of minimal area
    Cosín, C
    Monterde, J
    COMPUTATIONAL SCIENCE-ICCS 2002, PT II, PROCEEDINGS, 2002, 2330 : 72 - 81
  • [23] Optimal parameterizations of Bezier surfaces
    Yang, Yi-Jun
    Yong, Jun-Hai
    Zhang, Hui
    Paul, Jean-Claude
    Sun, Jiaguang
    Advances in Visual Computing, Pt 1, 2006, 4291 : 672 - 681
  • [24] Triangular Bezier sub-surfaces on a triangular Bezier surface
    Chen, Wenyu
    Yu, Rongdong
    Zheng, Jianmin
    Cai, Yiyu
    Au, Chikit
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5001 - 5016
  • [25] BEST APPROXIMATIONS OF SYMMETRICAL SURFACES BY BIQUADRATIC BEZIER SURFACES
    EISELE, EF
    COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (03) : 331 - 343
  • [26] C-Bezier curves and surfaces
    Zhang, JW
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1999, 61 (01): : 2 - 15
  • [27] Triangular Bezier surfaces of minimal area
    Arnal, A
    Lluch, A
    Monterde, J
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCA 2003, PT 3, PROCEEDINGS, 2003, 2669 : 366 - 375
  • [28] Bezier Surfaces for Modeling Inclusions in PIES
    Boltuc, Agnieszka
    Zieniuk, Eugeniusz
    Szerszen, Krzysztof
    Kuzelewski, Andrzej
    COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 170 - 183
  • [29] GC(1) multisided Bezier surfaces
    Ye, X
    Nowacki, H
    Patrikalakis, NM
    ENGINEERING WITH COMPUTERS, 1997, 13 (04) : 222 - 234
  • [30] Are rational Bezier surfaces monotonicity preserving?
    Delgado, J.
    Pena, J. M.
    COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (05) : 303 - 306