Beta-Bezier Surfaces

被引:0
|
作者
Moustafa S. [1 ]
Kazadi A. [1 ]
Cheng F.F. [1 ]
Lai S. [2 ]
Lin A.J. [3 ]
机构
[1] University of Kentucky, United States
[2] Georgia Gwinnett College, United States
[3] Austin Peay State University, United States
来源
关键词
Beta-Bezier Curves; Beta-Bezier Surfaces; Bezier curves; Bezier surfaces; interpolation; tension control;
D O I
10.14733/cadaps.2024.693-704
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
In this paper, the concept of tension control [1] is developed for Bezier surfaces so that one can reshape a so-called Beta-Bezier surface without moving its control points, a property motivated by NURBS surfaces but can be performed more efficiently and in a friendlier manner with the new surface representation technique. In addition to developing the concept of tension control for Bezier surfaces, an efficient rectangular mesh interpolation scheme for Beta-Bezier surfaces is also developed. © 2024 U-turn Press LLC,.
引用
收藏
页码:693 / 704
页数:11
相关论文
共 50 条
  • [1] Beta-bezier curves
    Cheng F.
    Kazadi A.N.
    Lin A.J.
    Computer-Aided Design and Applications, 2021, 18 (06): : 1265 - 1278
  • [2] Conditions of C2 continuity of composite Beta-Bezier curves and convergence of Beta-Bernstein operators
    Tong, Xiao-Juan
    Cai, Qing-Bo
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 200 - 204
  • [3] Tensor product Bezier surfaces on triangle Bezier surfaces
    Lasser, D
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (08) : 625 - 643
  • [4] Approximating rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Xu, Hui-Xia
    Wang, Guo-Jin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 287 - 295
  • [5] Bezier developable surfaces
    Fernandez-Jambrina, L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 55 : 15 - 28
  • [6] Bezier type surfaces
    Piscoran Laurian, Ioan
    Pop, Ovidiu T.
    Dan, Barbosu
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02): : 483 - 489
  • [7] Constrained approximation of rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Lewanowicz, Stanislaw
    Keller, Pawel
    Wozny, Pawel
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 93 - 111
  • [8] BETA BEZIER CURVES
    Levent, Akin
    Sahin, Bayram
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2019, 18 (01) : 79 - 94
  • [9] Convolution surfaces of quadratic triangular Bezier surfaces
    Peternell, Martin
    Odehnal, Boris
    COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (02) : 116 - 129
  • [10] On harmonic and biharmonic Bezier surfaces
    Monterde, J
    Ugail, H
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (07) : 697 - 715