Hybridizing particle swarm optimization with simulated annealing and differential evolution

被引:0
|
作者
Mirsadeghi, Emad [1 ,2 ]
Khodayifar, Salman [3 ]
机构
[1] Computer Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan,45136-66731, Iran
[2] Mechanical Engineering Department, Engineering Faculty, University of Tehran, Tehran,14174-14418, Iran
[3] Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan,45136-66731, Iran
来源
Cluster Computing | 2021年 / 24卷 / 02期
关键词
Particle swarm optimization (PSO);
D O I
暂无
中图分类号
学科分类号
摘要
Based on the algorithm structure, each metaheuristic algorithm may have its pros and cons, which may result in high performance in some problems and low functionality in some others. The idea is to hybridize two or more algorithms to cover each other’s weaknesses. In this study, particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) are combined to develop a more powerful search algorithm. First, the temperature concept of SA is applied to balance the exploration/exploitation capability of the hybridized algorithm. Then, the DE’s mutation operator is used to improve the exploration capability of the algorithm to escape the local minimums. Next, DE’s mutation operator has been modified so that past experiences can be used for smarter mutations. Finally, the PSO particles’ tendency to their local optimums or the global optimum, which balances the algorithm’s random and greedy search, is affected by the temperature. The temperature influences the algorithm’s behavior so that the random search is more significant at the beginning, and the greedy search becomes more important as the temperature is reduced. The results are compared with the basic PSO, SA, DE, cuckoo search (CS), and hybridized CS-PSO algorithm on 20 benchmark problems. The comparison reveals that, in most cases, the new algorithm outperforms others. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:1135 / 1163
相关论文
共 50 条
  • [41] Particle Swarm Optimization and Differential Evolution in Fuzzy Clustering
    Yang, Fengqin
    Zhang, Changhai
    Sun, Tieli
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT II, 2009, 5507 : 501 - +
  • [42] An integrated method of particle swarm optimization and differential evolution
    Kim, Pyungmo
    Lee, Jongsoo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (02) : 426 - 434
  • [43] Particle Swarm Optimization or Differential Evolution-A comparison
    Piotrowski, Adam P.
    Napiorkowski, Jaroslaw J.
    Piotrowska, Agnieszka E.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [44] Application of Simulated Annealing Particle Swarm Optimization Algorithm in Power Coal Blending Optimization
    Cui Yanbin
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 5234 - 5237
  • [45] Optimization of Plant Light Source Based on Simulated Annealing Particle Swarm Optimization Algorithm
    Cui, Shigang
    Lv, Huimin
    Wu, Xingli
    Zhang, Yongli
    He, Lin
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 700 - 703
  • [46] Reactive power optimization based on Particle Swarm Optimization and Simulated Annealing cooperative algorithm
    Shuangye Chen
    Lei Ren
    Fengqiang Xin
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 7210 - 7215
  • [47] Based on Particle Swarm Optimization and Simulated Annealing Combined Algorithm for Reactive Power Optimization
    Wang, Zhenshu
    Li, Linchuan
    Li, Bo
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 1909 - +
  • [48] Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions
    Singh, Narinder
    Singh, S. B.
    Houssein, Essam H.
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (01) : 23 - 56
  • [49] Application of Simulated Annealing Particle Swarm Optimization in Response Spectrum Fitting of Simulated Earthquake Wave
    Wang, Xueni
    Zhou, Jing
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 1082 - 1086
  • [50] Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions
    Narinder Singh
    S. B. Singh
    Essam H. Houssein
    Evolutionary Intelligence, 2022, 15 : 23 - 56