Classification of 270 classes of vector vortex beams using Machine learning-based methods

被引:3
|
作者
Bai X. [1 ]
Wang Y. [1 ]
Dai K. [2 ]
机构
[1] Beijing University of Technology, Beijing
[2] Clemson University, Clemson, 29634, SC
来源
Optik | 2023年 / 291卷
关键词
Atmospheric turbulence; Image encryption; Machine learning; Orbital angular momentum; Polarization; Vector vortex beams;
D O I
10.1016/j.ijleo.2023.171362
中图分类号
学科分类号
摘要
Vector vortex beams (VVBs) are a promising type of structured light that combine the orbital angular momentum (OAM) and the polarization states of light. Due to their intrinsic high dimensionality, VVBs show great advantages in applications like optical communications, information encryption, and quantum information processing. However, the high dimensionality presents a challenge for pattern detection. In this paper, we compare different machine learning-based methods for classifying 270 classes of VVB using basic CNN, MobileNet, and ResNet18 neural networks. We visualize the VVB modes using a color-coding method with Stokes parameters, and the neural networks’ performance is tested in a 1 km free space communication link with four atmospheric turbulence strengths. The results demonstrate that neural networks can recognize large datasets of laser modes with good accuracies, even under turbulence environments. We also propose an image encryption scheme using the VVB dataset to encode an RGB figure which is transmitted through the turbulence channel and successfully recovered by the pre-trained neural networks. Our study highlights the potential of artificial intelligence for VVB pattern recognition and could have a significant impact on the design of future optical communications systems and information encryption protocols. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 50 条
  • [31] Machine learning-based adaptive degradation model for RC beams
    Wu, Zi-Nan
    Han, Xiao-Lei
    He, An
    Cai, Yan-Fei
    Ji, Jing
    ENGINEERING STRUCTURES, 2022, 253
  • [32] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [33] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [34] Machine Learning-Based Water Quality Classification Assessment
    Chen, Wenliang
    Xu, Duo
    Pan, Bowen
    Zhao, Yuan
    Song, Yan
    WATER, 2024, 16 (20)
  • [35] Machine learning-based classification and diagnosis of clinical cardiomyopathies
    Alimadadi, Ahmad
    Manandhar, Ishan
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    PHYSIOLOGICAL GENOMICS, 2020, 52 (09) : 391 - 400
  • [36] Analytics of machine learning-based algorithms for text classification
    Hassan, Sayar Ul
    Ahamed, Jameel
    Ahmad, Khaleel
    Sustainable Operations and Computers, 2022, 3 : 238 - 248
  • [37] Machine Learning-Based Traffic Classification of Wireless Traffic
    Song, Ronggong
    Willink, Tricia
    2019 INTERNATIONAL CONFERENCE ON MILITARY COMMUNICATIONS AND INFORMATION SYSTEMS (ICMCIS), 2019,
  • [38] Machine Learning-based Classification of Online Industrial Datasets
    Faber, Rastislav
    L'ubusky, Karol
    Paulen, Radoslav
    2023 24TH INTERNATIONAL CONFERENCE ON PROCESS CONTROL, PC, 2023, : 132 - 137
  • [39] Machine Learning-Based Ransomware Classification of Bitcoin Transactions
    Alsaif, Suleiman Ali
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2023, 2023
  • [40] Diffraction deep neural network-based classification for vector vortex beams
    Peng, Yixiang
    Chen, Bing
    Wang, Le
    Zhao, Shengmei
    CHINESE PHYSICS B, 2024, 33 (03)