Classification of Human Movements with Motion Capture Data in a Motor Rehabilitation Context

被引:2
|
作者
Rodrigues, Luis G. S. [1 ]
Iope, Rogerio L. [1 ]
Brega, Jose R. F. [1 ]
Dias, Diego R. C. [2 ]
Guimaraes, Marcelo P. [3 ]
Brandao, Alexandre F. [4 ]
Rocha, Leonardo [2 ]
机构
[1] Sao Paulo State Univ UNESP, Sao Paulo, Brazil
[2] Fed Univ Sao Joao Del Rei UFSJ, Sao Joao Del Rei, Brazil
[3] Univ Fed Sao Paulo, UNIFESP, Postgrad Program UNIFACCAMP, Sao Paulo, Brazil
[4] Univ Campinas UNICAMP, Brazilian Inst Neurosci & Neurotechnol BRAIN Bra, Campinas, SP, Brazil
来源
PROCEEDINGS OF SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY, SVR 2021 | 2021年
关键词
Computer vision; motion capture; augmented reality; supervised machine learning;
D O I
10.1145/3488162.3488210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Augmented and virtual reality can be used in motor or neuromotor rehabilitation clinics to make patients become more motivated and engaged with the treatment. The interaction with the applications stimulates the patient to exercise the impaired limb while enjoying the experience. This work takes the real-time tracking data generated from optical and wearable motion capture devices and uses it to feed machine learning algorithms. The data processing makes the movements with different durations consistent and enables the convergence of the models. Also, the data format is independent of the camera position and user. One of the experiments presented recognizes eight movements being executed in the system.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 50 条
  • [41] Human Motion Capture Data Segmentation Based on LLE Algorithm
    Zhang, Shulu
    Zhou, Dongsheng
    Zhang, Qiang
    MECHANICAL, ELECTRONIC AND ENGINEERING TECHNOLOGIES (ICMEET 2014), 2014, 538 : 481 - 485
  • [42] Human Motion Capture Data Segmentation Based on Graph Partition
    Lv, Na
    Feng, Zhiquan
    Zhao, Xiuyang
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 1117 - 1121
  • [43] Automatic Labanotation Generation Based on Human Motion Capture Data
    Guo, Hao
    Miao, Zhenjiang
    Zhu, Feiyue
    Zhang, Gang
    Li, Song
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 426 - 435
  • [44] Human motion capture data segmentation based on geometric features
    Yang, Yue-Dong
    Wang, Li-Li
    Hao, Ai-Min
    Feng, Chun-Sheng
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2007, 19 (10): : 2229 - 2234
  • [45] A motion capture system for sport training and rehabilitation
    Mirabella, Orazio
    Raucea, Antonino
    Fisichella, Fausto
    Gentile, Luigi
    4TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI 2011), 2011, : 52 - 59
  • [46] Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex
    Jorge, Ahmed
    Royston, Dylan A.
    Tyler-Kabara, Elizabeth C.
    Boninger, Michael L.
    Collinger, Jennifer L.
    NEUROSURGERY, 2020, 87 (04) : 630 - 638
  • [47] Application of Hidden Markov Model in Human Motion Recognition by Using Motion Capture Data
    BolaBola, Joelle Zita
    Wang, Yao
    Wu, Shuang
    Qin, Hua
    Niu, Jianwei
    ADVANCES IN PHYSICAL ERGONOMICS AND HUMAN FACTORS, 2016, 489 : 21 - 28
  • [48] Adaptation of human motion capture data to humanoid robots for motion imitation using optimization
    Intelligent Robotics Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea, Republic of
    Integr. Comput. Aided Eng., 2006, 4 (377-389):
  • [49] Making feasible walking motion of humanoid robots from human motion capture data
    Dasgupta, A
    Nakamura, Y
    ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, 1999, : 1044 - 1049
  • [50] Adaptation of human motion capture data to humanoid robots for motion imitation using optimization
    Kim, ChangHwan
    Kim, Doik
    Oh, Yonghwan
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2006, 13 (04) : 377 - 389